Aspects of locality in Isabelle —
local proofs, local theories,
and local everything

Makarius Wenzel

February 2008

Technology develops from the primitive
via the complicated
to the simple.

Antoine de Saint-Exupéry

Introduction

What is locality anyway?

Locality means . . .

e working relatively to a context
(theory or proof environment)

e moving results between contexts via morphisms
e.g. from abstract theory to concrete application

e replacing logical encodings by native elements of Isabelle/lsar

Consequences:

e reduced complexity of logical statements, proofs etc.
e improved flexibility and scalability

e simplified construction and composition of add-on tools

Introduction

PART |

Local proofs

Rules and proofs

Textbook inferences: proof trees

B(a) dz. B(z) C
Jdz. B(x) C

Isabelle/Pure rules: framework formulae
Ba= (Jdz. B 1) (dz. Bz) = (A\z. Bx = () = C

Isabelle/Isar proofs: proof texts

assume B a assume Jdz. B x
then have dz. B z .. then obtain ¢ where B « ..

PART | Local proofs 4

Isabelle/Isar proof decomposition

have Az. Az = Bz
proof —

fix x

assume A ¢

show B z

(proof)
ged

Decomposition in two parts:
1. Rule extracted from proof body
(conclusion within a local context)

2. Result retrofitted into pending goal
(very flexible due to higher-order unification etc.)

PART | Local proofs

Isabelle /Pure rule composition

rule: Aa=— Ba
goal: (N\z. HT = B'7T) = C
goal unifier: (A\z. B (ax))0 = B'6

— — luti
Mo T 5 — A (@z)6 — Co (resolution)
goal: (Nz. HT = A7) = C
assm unifier: A6 = H;0 (for some H;) ,
o (assumption)

Flexibility in proof composition:

e rename / permute parameters (fix)

e permute assumptions (assume) and goals (show)
e generalize claim (fix / assume / show)

PART | Local proofs

Isabelle/lIsar proof contexts

{ {
fix x assume A
have B = (proof) have B (proof)
} }
note (Az. B z) note (A — B)
{ {
def z = «a obtain a where B a (proof)
have B = (proof) have C' (proof)
} }
note (B a) note (C)

PART | Local proofs

From contexts to statements

Idea:

e Avoid unwieldy logical formula, i.e.
no object-logic: V. A x — B x
no meta-logic: A\z. A x = B x

e Use native Isar context & conclusion elements (for z, A x - B x)

fixes z
assumes A z
shows B 2z

or enriched version:

fixes 1 and z5 and . ..

assumes a; |att]: A1 T (is YP1) and as |att]: As T (is 7P3) and . ..

shows b, [att]: B1 T (is ?Q)1) and by [att]: B2 T (is 7Q)2) and ...

PART | Local proofs 8

Universal contexts — introduction rules

Context elements fix / assume in structured proofs:

{ {

fix x assume A

have B z (proof) have B (proof)
} }
note (Az. B 1) note (A — B)

Corresponding top-level statement for rule Az. A ©+ = B z:

theorem
fixes x
assumes A ¢
shows B z

PART | Local proofs

Existential contexts — elimination rules

Derived context element obtain in structured proofs:

{

obtain a where B a (proof)
have C (proof)

¥

note ((C)

Corresponding top-level statement for 3 /A elimination rules etc.:

theorem theorem
assumes dz. Bz assumes A A B
obtains a where B a obtains A and B
theorem theorem
assumes A V B fixes = y :: nat
obtains (left) A | (right) B obtains (lt) c < y | (eq) z =y | (gt) z >y

PART | Local proofs 10

Example: Classical FOL

conjl: assumes A and B shows A A\ B
conjE: assumes A A B obtains A and B

disjl,: assumes A shows A VvV B
disjlo: assumes B shows A VvV B
disjE: assumes A V B obtains A | B

impl: assumes A —> B shows A — B
impE: assumes A — B and A obtains B

alll: assumes A\z. B x shows Vz. Bz
allE: assumes YV . B x obtains B a

exl: assumes B a shows d 2. B x
exll: assumes 3 2. B obtains z where B z

classical: obtains — thesis
Peirce: obtains thesis —> A

PART | Local proofs

Advantages of native Isar statements

e Simple re-use of more sophisticated Isar proof elements
e Scalable goal specifications
e Reduced complexity for formal proofs in

1. proving / using the result
2. structured Isar proof / tactic scripts / internal proof objects

Consequences:
e Reduced “formality” — towards “logic-free reasoning”
e May have to unlearn first-order logic!

PART | Local proofs 12

PART Il

Local theories

Motivation

e Infrastructure for organizing definitions and proofs

e Separation of concerns:

1. definitional packages (e.g. inductive, function)
2. target mechanisms (e.g. locale, class)

— large product space: definitions X targets

e Simplification and generalization of Isabelle/Isar concepts

PART II Local theories

14

Definitional elements within universal contexts

A let

terms | fix x T define c = ¢
thms | assume a: A | note b = (B)

Note: separation of axiomatic vs. definitional specifications!

Hindley-Milner polymorphism:
e Assumptions: fixed types
fix id :: o = «
assume id-def: 1d = Az :: a. T
e Conclusions: arbitrary types
define id = \z :: a. x (for arbitrary «)
note refil = (A\x :: a. © =) (for arbitrary «)

PART II Local theories 15

Example (1): global definitions

theory Fx1 imports Main
begin

inductive path :: (‘a = ‘a = bool) = 'a = 'a = bool
for rel :: 'a = 'a = bool

where base: path rel ¢ x
| step: rel © y = path rel y 2 = path rel x 2

theorem assumes path rel v z shows P z z
using (path rel T z)
proof induct
{ case (base x) then show ?case {(proof) }
{ case (step = y z) then show Zcase (proof) }
ged

end

PART II Local theories

16

Example (2a): local definitions

theory Fz2 imports Main begin

locale rel = fixes rel :: 'a = 'a = bool
begin

inductive path :: 'a = 'a = bool
where base: path © x | step: rel x y = path y z = path x z

theorem assumes path r z shows P x z
using (path = z)
proof induct
{ case (base x) then show ?case {(proof) }
{ case (step = y z) then show Zcase (proof) }
ged

end

PART II Local theories

17

Example (2b): adding local results

context rel
begin

theorem
assumes path x z
obtains z = 2
| ¥ where x # 2 and rel x y and path y 2
using assms by cases auto

end

end

PART II Local theories

18

Local theory infrastructure

theory background environment (abstract certificate)
context main working environment (contains theory)
local-theory =~ target-context X wvirtual-context

-+ interpretation of conclusions

theory target-context virtual-context

Standard interpretation by A-lifting (over fix z assume A z):

Ax. t loc.c
(Nz. A x = B) loc.b

thy.c
thy.b

thy.c define c = ¢
(B) note b = (B)

PART II Local theories 19

Applications (1): specification packages

Local specifications:

e definition and theorem (wrapper for define and note primitives)
M. Wenzel, 2006

e abbreviation (abstract syntax) and notation (concrete syntax)
M. Wenzel, 2006]

e inductive (inductive predicates defined as least-fixed point)
[S. Berghofer, 2006 /2007]

e function (general recursive functions defined as inductive graph)
[A. Krauss, 2006/2007]

Global type constructions (non-dependent):
e datatype (infinitary tree types) [really soon]
e record (nested tuples) [really soon]

PART I Local theories 20

Applications (2): target mechanisms

e locale [oc = fixes x assumes A z:
interpret define and note via \-lifting
[C. Ballarin, M. Wenzel, 2006 /2007]

e class ~ locale + interpretation:

second interpretation in terms of polymorphic consts

(dictionary construction)
[F. Haftmann, M. Wenzel, 2006/2007]

e instantiation c :: (S) S [really soon]
replace dependencies on fixes by instances of polymorphic consts
(internal overloading)

e statespace s = imports + fields

modular statespaces (with merge, rename)
[N. Schirmer, 2007]

PART I Local theories 21

PART Il

Local everything

Generic context data

Internally record of data-slots (dynamically typed disjoint sums)
Programming interface recovers strongly static typing

functor ProofDataFun(ARGS): RESULT, where

ARGS = sig type T val init: theory — T end
RESULT = sig val put: T — context — context val get: context — T end

Example content:

e Logical declarations (variables, assumptions)

e Definitions (terms, theorems)

e Type-inference information

e Syntax annotations (mixfix grammar)

e Hints for proof tools (simpset, claset, arithmetic setup etc.)

PART IlI Local everything 23

Generic declarations

A let generic
terms | fix z == 7 define ¢ = ¢t | term-syntax (d))
thms | assume a: A | note b = (B) | declaration ((d))

where d: morphism — context — context

Logical transformations: (for type, term, thm)

transform-thm: morphism — thm — thm

Arbitrary transformations: (for morphism — «)
transform: morphism — (morphism — a) — (morphism — «)
transform o f =). f (¢ o)

form: (morphism — a) — «
form f = f identity

PART 111 Local everything 24

Application: localized proof tools

Implementation pattern [A. Chaieb, M. Wenzel, 2007]
e.g. method algebra in Isabelle/HOL:

1. abstract theory context defined as locale or class
e.g. ring structures for Grobner Bases

2. extra-logical context data maintained within the context
e.g. ML functions to detect canonical ring constants, prove con-
versions etc.

3. tool implementation depending on a morphism that transfers all
data into concrete application context

Note:
e require “polymorphic” tool < tool-compliant morphisms

e type-classes more robust than arbitrary locales

PART IlI Local everything 25

More locality: local executions and concurrency

Idea:
e independent executions relative to explicit theory/proof context

Benefits:
e faster loading of theory subgraphs (available in Isabelle2007)

e much faster loading of single theories due to proof irrelevance
future

e much faster interactive development due to asynchronous checking
future

— towards stateless interactive theorem proving

PART IlI Local everything 26

Example: irrelevant proofs

lemma [simp]: attributes (Val (att, text)) = att
by (simp add: attributes-def)

lemma [simp]: attributes (Env att dir) = att

by (simp add: attributes-def)

lemma [simp]|: attributes (map-attributes f file) = f (attributes file)
by (cases file) (simp-all add: attributes-def map-attributes-def split-tupled-all)

lemma [simp|: map-attributes f (Val (att, text)) = Val (f att, text)
by (simp add: map-attributes-def)

lemma [simp|: map-attributes f (Env att dir) = Env (f att) dir
by (simp add: map-attributes-def)

PART IlI Local everything 27

Example: sub-structured proofs

theorem transition-uniq:
/ / 17 17,
assumes root': root —x— root’ and root'’: root —x— root
/ 7 17
shows root” = root"" using root

proof cases
case read

with root’ show ?thesis by cases auto

next
case write

with root’ show ?thesis by cases auto

next
case chmod

with root’ show ?thesis by cases auto

next

ged

PART IlI Local everything

28

Conclusion

General Isabelle trends

e From a pure logical framework
towards a general software framework for logic applications

e Isabelle/Isar as “logical operating system” to integrate tools for
formal logic (centered around local context)

e |sabelle2007 greatly improves upon this infrastructure
e More to come . ..

Conclusion 30

