
Aspects of locality in Isabelle —
local proofs, local theories,

and local everything

Makarius Wenzel

February 2008

λ →

∀
=Isa

be
lle

β
α

Technology develops from the primitive
via the complicated

to the simple.

Antoine de Saint-Exupéry

Introduction

What is locality anyway?

Locality means . . .

• working relatively to a context
(theory or proof environment)

• moving results between contexts via morphisms
e.g. from abstract theory to concrete application

• replacing logical encodings by native elements of Isabelle/Isar

Consequences:

• reduced complexity of logical statements, proofs etc.

• improved flexibility and scalability

• simplified construction and composition of add-on tools

Introduction 2

PART I

Local proofs

Rules and proofs

Textbook inferences: proof trees

B(a)
∃ x . B(x)

∃ x . B(x)

[x][B(x)]....
C

C

Isabelle/Pure rules: framework formulae

B a =⇒ (∃ x . B x) (∃ x . B x) =⇒ (
∧

x . B x =⇒ C) =⇒ C

Isabelle/Isar proofs: proof texts

assume B a
then have ∃ x . B x ..

assume ∃ x . B x
then obtain a where B a ..

PART I Local proofs 4

Isabelle/Isar proof decomposition

have
V

x . A x =⇒ B x
proof −

fix x
assume A x
show B x
〈proof 〉

qed

Decomposition in two parts:

1. Rule extracted from proof body
(conclusion within a local context)

2. Result retrofitted into pending goal
(very flexible due to higher-order unification etc.)

PART I Local proofs 5

Isabelle/Pure rule composition

rule: A a =⇒ B a

goal : (
V
x. H x =⇒ B ′ x) =⇒ C

goal unifier : (λx. B (a x)) θ = B ′θ

(
V
x. H x =⇒ A (a x)) θ =⇒ C θ

(resolution)

goal : (
V
x. H x =⇒ A x) =⇒ C

assm unifier : A θ = H i θ (for some H i)

C θ
(assumption)

Flexibility in proof composition:

• rename / permute parameters (fix)

• permute assumptions (assume) and goals (show)

• generalize claim (fix / assume / show)

PART I Local proofs 6

Isabelle/Isar proof contexts

{
fix x
have B x 〈proof 〉

}
note 〈

V
x . B x 〉

{
assume A
have B 〈proof 〉

}
note 〈A =⇒ B 〉

{
def x ≡ a
have B x 〈proof 〉

}
note 〈B a〉

{
obtain a where B a 〈proof 〉
have C 〈proof 〉

}
note 〈C 〉

PART I Local proofs 7

From contexts to statements

Idea:

• Avoid unwieldy logical formula, i.e.

no object-logic: ∀ x . A x −→ B x
no meta-logic:

∧
x . A x =⇒ B x

• Use native Isar context & conclusion elements (for x , A x ` B x)

fixes x
assumes A x
shows B x

or enriched version:

fixes x 1 and x 2 and . . .
assumes a1 [att]: A1 x (is ?P1) and a2 [att]: A2 x (is ?P2) and . . .
shows b1 [att]: B1 x (is ?Q1) and b2 [att]: B2 x (is ?Q2) and . . .

PART I Local proofs 8

Universal contexts — introduction rules

Context elements fix / assume in structured proofs:

{
fix x
have B x 〈proof 〉

}
note 〈

V
x . B x 〉

{
assume A
have B 〈proof 〉

}
note 〈A =⇒ B 〉

Corresponding top-level statement for rule
∧

x . A x =⇒ B x :

theorem
fixes x
assumes A x
shows B x

PART I Local proofs 9

Existential contexts — elimination rules

Derived context element obtain in structured proofs:

{
obtain a where B a 〈proof 〉
have C 〈proof 〉

}
note 〈C 〉

Corresponding top-level statement for ∃ /∧ elimination rules etc.:
theorem

assumes ∃ x . B x
obtains a where B a

theorem
assumes A ∧ B
obtains A and B

theorem
assumes A ∨ B
obtains (left) A | (right) B

theorem
fixes x y :: nat
obtains (lt) x < y | (eq) x = y | (gt) x > y

PART I Local proofs 10

Example: Classical FOL

conjI : assumes A and B shows A ∧ B
conjE : assumes A ∧ B obtains A and B

disjI 1: assumes A shows A ∨ B
disjI 2: assumes B shows A ∨ B
disjE : assumes A ∨ B obtains A B

impI : assumes A =⇒ B shows A −→ B
impE : assumes A −→ B and A obtains B

allI : assumes
V

x . B x shows ∀ x . B x
allE : assumes ∀ x . B x obtains B a

exI : assumes B a shows ∃ x . B x
exE : assumes ∃ x . B x obtains x where B x

classical : obtains ¬ thesis
Peirce: obtains thesis =⇒ A

PART I Local proofs 11

Advantages of native Isar statements

• Simple re-use of more sophisticated Isar proof elements

• Scalable goal specifications

• Reduced complexity for formal proofs in

1. proving / using the result
2. structured Isar proof / tactic scripts / internal proof objects

Consequences:

• Reduced “formality” — towards “logic-free reasoning”

• May have to unlearn first-order logic!

PART I Local proofs 12

PART II

Local theories

Motivation

• Infrastructure for organizing definitions and proofs

• Separation of concerns:

1. definitional packages (e.g. inductive, function)
2. target mechanisms (e.g. locale, class)

→ large product space: definitions × targets

• Simplification and generalization of Isabelle/Isar concepts

PART II Local theories 14

Definitional elements within universal contexts

λ let
terms fix x :: τ define c ≡ t
thms assume a: A note b = 〈B 〉

Note: separation of axiomatic vs. definitional specifications!

Hindley-Milner polymorphism:

• Assumptions: fixed types
fix id :: α ⇒ α
assume id-def : id ≡ λx :: α. x

• Conclusions: arbitrary types
define id ≡ λx :: α. x (for arbitrary α)
note refl = 〈

∧
x :: α. x = x 〉 (for arbitrary α)

PART II Local theories 15

Example (1): global definitions

theory Ex1 imports Main
begin

inductive path :: (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool
for rel :: ′a ⇒ ′a ⇒ bool

where base: path rel x x
| step: rel x y =⇒ path rel y z =⇒ path rel x z

theorem assumes path rel x z shows P x z
using 〈path rel x z 〉
proof induct

{ case (base x) then show ?case 〈proof 〉 }
{ case (step x y z) then show ?case 〈proof 〉 }

qed

end

PART II Local theories 16

Example (2a): local definitions

theory Ex2 imports Main begin

locale rel = fixes rel :: ′a ⇒ ′a ⇒ bool
begin

inductive path :: ′a ⇒ ′a ⇒ bool
where base: path x x | step: rel x y =⇒ path y z =⇒ path x z

theorem assumes path x z shows P x z
using 〈path x z 〉
proof induct

{ case (base x) then show ?case 〈proof 〉 }
{ case (step x y z) then show ?case 〈proof 〉 }

qed

end

PART II Local theories 17

Example (2b): adding local results

context rel
begin

theorem
assumes path x z
obtains x = z
| y where x 6= z and rel x y and path y z

using assms by cases auto

end

end

PART II Local theories 18

Local theory infrastructure

theory background environment (abstract certificate)
context main working environment (contains theory)
local-theory ≈ target-context × virtual-context

+ interpretation of conclusions

theory target-context virtual-context

Standard interpretation by λ-lifting (over fix x assume A x):

thy .c ≡ λx . t loc.c ≡ thy .c x define c ≡ t
thy .b = 〈

∧
x . A x =⇒ B 〉 loc.b = 〈B 〉 note b = 〈B 〉

PART II Local theories 19

Applications (1): specification packages

Local specifications:

• definition and theorem (wrapper for define and note primitives)
[M. Wenzel, 2006]

• abbreviation (abstract syntax) and notation (concrete syntax)
[M. Wenzel, 2006]

• inductive (inductive predicates defined as least-fixed point)
[S. Berghofer, 2006/2007]

• function (general recursive functions defined as inductive graph)
[A. Krauss, 2006/2007]

Global type constructions (non-dependent):

• datatype (infinitary tree types) [really soon]

• record (nested tuples) [really soon]

PART II Local theories 20

Applications (2): target mechanisms

• locale loc = fixes x assumes A x :

interpret define and note via λ-lifting
[C. Ballarin, M. Wenzel, 2006/2007]

• class ≈ locale + interpretation:

second interpretation in terms of polymorphic consts
(dictionary construction)
[F. Haftmann, M. Wenzel, 2006/2007]

• instantiation c :: (S) S [really soon]

replace dependencies on fixes by instances of polymorphic consts
(internal overloading)

• statespace s = imports + fields
modular statespaces (with merge, rename)
[N. Schirmer, 2007]

PART II Local theories 21

PART III

Local everything

Generic context data

Internally record of data-slots (dynamically typed disjoint sums)

Programming interface recovers strongly static typing

functor ProofDataFun(ARGS): RESULT, where

ARGS = sig type T val init: theory → T end

RESULT = sig val put: T → context → context val get: context → T end

Example content:

• Logical declarations (variables, assumptions)

• Definitions (terms, theorems)

• Type-inference information

• Syntax annotations (mixfix grammar)

• Hints for proof tools (simpset, claset, arithmetic setup etc.)

PART III Local everything 23

Generic declarations

λ let generic
terms fix x :: τ define c ≡ t term-syntax 〈〈d〉〉
thms assume a: A note b = 〈B 〉 declaration 〈〈d〉〉

where d : morphism → context → context

Logical transformations: (for type, term, thm)

transform-thm: morphism → thm → thm

Arbitrary transformations: (for morphism → α)

transform: morphism → (morphism → α) → (morphism → α)
transform ϕ f ≡ λψ. f (ψ ◦ ϕ)

form: (morphism → α) → α
form f ≡ f identity

PART III Local everything 24

Application: localized proof tools

Implementation pattern [A. Chaieb, M. Wenzel, 2007]
e.g. method algebra in Isabelle/HOL:

1. abstract theory context defined as locale or class
e.g. ring structures for Gröbner Bases

2. extra-logical context data maintained within the context
e.g. ML functions to detect canonical ring constants, prove con-
versions etc.

3. tool implementation depending on a morphism that transfers all
data into concrete application context

Note:

• require “polymorphic” tool ↔ tool-compliant morphisms

• type-classes more robust than arbitrary locales

PART III Local everything 25

More locality: local executions and concurrency

Idea:

• independent executions relative to explicit theory/proof context

Benefits:

• faster loading of theory subgraphs (available in Isabelle2007)

• much faster loading of single theories due to proof irrelevance
[future]

• much faster interactive development due to asynchronous checking
[future]

→ towards stateless interactive theorem proving

PART III Local everything 26

Example: irrelevant proofs

lemma [simp]: attributes (Val (att, text)) = att

by (simp add : attributes-def)

lemma [simp]: attributes (Env att dir) = att

by (simp add : attributes-def)

lemma [simp]: attributes (map-attributes f file) = f (attributes file)

by (cases file) (simp-all add : attributes-def map-attributes-def split-tupled-all)

lemma [simp]: map-attributes f (Val (att, text)) = Val (f att, text)

by (simp add : map-attributes-def)

lemma [simp]: map-attributes f (Env att dir) = Env (f att) dir

by (simp add : map-attributes-def)

PART III Local everything 27

Example: sub-structured proofs

theorem transition-uniq:
assumes root ′: root −x→ root ′ and root ′′: root −x→ root ′′

shows root ′= root ′′ using root ′′

proof cases
case read
with root ′ show ?thesis by cases auto

next
case write
with root ′ show ?thesis by cases auto

next
case chmod
with root ′ show ?thesis by cases auto

next
. . .
qed

PART III Local everything 28

Conclusion

General Isabelle trends

• From a pure logical framework
towards a general software framework for logic applications

• Isabelle/Isar as “logical operating system” to integrate tools for
formal logic (centered around local context)

• Isabelle2007 greatly improves upon this infrastructure

• More to come . . .

Conclusion 30

