SMT solver for theory of all-different

Milan Banković Filip Marić {milan,filip}@matf.bg.ac.rs

Department of Computer Science Faculty of Mathematics University of Belgrade

Workshop on Formal and Automated Theorem Proving and Applications.

Belgrade 2009.

Outline

- Introduction to all-different constraint
- 2 Representation in first-order logic
- Our all-different SMT solver
- Future work and conclusions

Outline

- 1 Introduction to all-different constraint
- 2 Representation in first-order logic
- Our all-different SMT solver
- 4 Future work and conclusions

Definition of all-different constraint

Definition

Given a set of variables x_1, x_2, \ldots, x_n , where each variable x_i takes values from its corresponding finite domain $D(x_i)$, then alldiff (x_1, x_2, \ldots, x_n) means that every two different variables must take different values $(i \neq j \Rightarrow x_i \neq x_i)$.

Applications

Broad variety of all-different based problems can be reduced to the SAT problem, using the SMT approach:

- Puzzle solving (Sudoku, Latin Square, Eight Queens).
- Scheduling and timetabling.

Example of all-different based problem

Example (Latin square 5×5)

	3	4	
3	4	5	
4	5		
5			

- Each cell should be filled with a value from 1 to 5.
- Each row and each column is constrained by all-different constraint.
- Some values are imposed.

Example of all-different based problem

Example (Latin square 5×5)

1	2	3	4	5
2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4

- Each cell should be filled with a value from 1 to 5.
- Each row and each column is constrained by all-different constraint.
- Some values are imposed.

Outline

- Introduction to all-different constraint
- 2 Representation in first-order logic
- Our all-different SMT solver
- 4 Future work and conclusions

Notes

 For each cell one variable is introduced.

- For each cell one variable is introduced.
- For each variable one clause defines its domain.

- For each cell one variable is introduced.
- For each variable one clause defines its domain.
- For each row and each column – unit clause with all-different.

$$(x_{11} = 1 \lor x_{11} = 2 \lor \dots \lor x_{11} = 5) \land (x_{12} = 1 \lor x_{12} = 2 \lor \dots \lor x_{12} = 5) \land \land (x_{55} = 1 \lor x_{55} = 2 \lor \dots \lor x_{55} = 5) \land \\ all diff(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}) \land \\ all diff(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) \land \land \\ all diff(x_{15}, x_{25}, x_{35}, x_{45}, x_{55}) \land \\ x_{51} = 5 \land \\ x_{41} = 4 \land \\ \dots \\ x_{23} = 4$$

- For each cell one variable is introduced.
- For each variable one clause defines its domain.
- For each row and each column – unit clause with all-different.
- For each imposed value

 unit clause with
 equality.

Representation of solution

$$x_{11} = 1 \land x_{12} = 2 \land \dots \land x_{15} = 5$$
 $x_{21} = 2 \land x_{22} = 3 \land \dots \land x_{25} = 1$
 \dots
 $x_{51} = 5 \land \dots \land x_{52} = 1 \land x_{55} = 4$

Notes

 Solution of the problem can be represented as a model of the corresponding formula.

Representation of solution

$$x_{11} = 1 \land x_{12} = 2 \land \dots \land x_{15} = 5$$
 $x_{21} = 2 \land x_{22} = 3 \land \dots \land x_{25} = 1$
 \dots
 $x_{51} = 5 \land \dots \land x_{52} = 1 \land x_{55} = 4$

- Solution of the problem can be represented as a model of the corresponding formula.
- Model of the formula is an assignment of values to variables which satisfies all the formula's clauses.

Outline

- Introduction to all-different constraint
- 2 Representation in first-order logic
- Our all-different SMT solver
- 4 Future work and conclusions

About SMT solvers

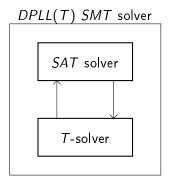
What is an SMT solver?

SMT solver checks for satisfiability of quantifier-free first-order formula with respect to some background theory.

"Lazy" approach

- Each atom in the formula is considered as a propositional symbol.
- SAT solver checks for propositional model of the formula.
- Propositional model is checked for satisfiability in the theory.

DPLL-based SMT solver structure



- SAT solver:
 - incrementally builds partial model
 - checks for propositional satisfiability
 - backtracks if conflict happens
- T-solver (or Theory solver):
 - Detects conflicts with theory
 - Handles theory propagations
 - Explains conflicts and/or propagations

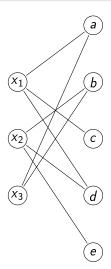
Implementation of all-different T-solver

- T-solver implementation is based on matching theory in bipartite graphs.
- One bipartite graph is assigned to each all-different atom appearing in the formula.

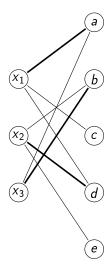
Notes

 Each vertex at the left side corresponds to one variable.

- Each vertex at the left side corresponds to one variable.
- Each vertex at the right side corresponds to one value.



- Each vertex at the left side corresponds to one variable.
- Each vertex at the right side corresponds to one value.
- Each variable is connected to values from its domain.



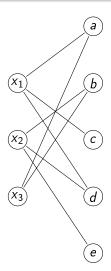
- Each vertex at the left side corresponds to one variable.
- Each vertex at the right side corresponds to one value.
- Each variable is connected to values from its domain.
- Solution corresponds to matching that covers left side vertices.

Definition_i

Given a partial model $\Delta = A_1, A_2, \ldots, A_n$, we say that model Δ is inconsistent with the theory T if $\Delta \models_T \bot$. We also say that Δ is in conflict with the theory T.

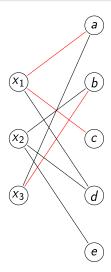
Conflict detection in all-different

- Optimal matching matching with maximal cardinality.
- all-different is satisfiable if and only if optimal matching covers left side vertices.

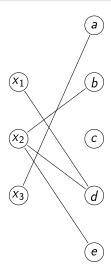


Notes

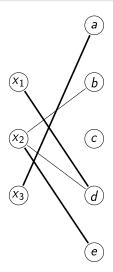
• Partial model: $x_1 = d, x_3 \neq b$.



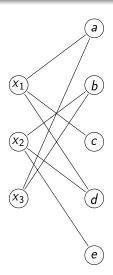
- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.



- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.

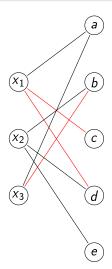


- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.
- Optimal matching covers set of left vertices, so all-different constraint is satisfiable.

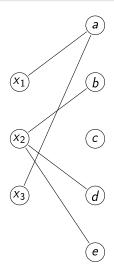


Notes

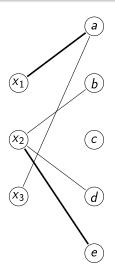
• Partial model: $x_1 = a, x_3 \neq b$.



- Partial model: $x_1 = a, x_3 \neq b$.
- Edges to remove: $x_1 = c, x_1 = d, x_3 = b$.



- Partial model: $x_1 = a, x_3 \neq b$.
- Edges to remove: $x_1 = c, x_1 = d, x_3 = b$.



- Partial model: $x_1 = a, x_3 \neq b$.
- Edges to remove: $x_1 = c, x_1 = d, x_3 = b$.
- Optimal matching doesn't cover set of left vertices, so all-different constraint is not satisfiable. Conflict is reported!

Optimal matching construction

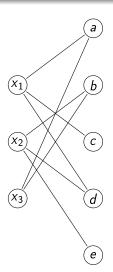
- Hopcroft and Karp's algorithm (1973.).
- The algorithm incrementally augments current matching until optimal matching is constructed.
- The algorithm executes in \sqrt{k} graph traversals, where k is cardinality of constructed matching.

Definition

Given a partial model $\Delta = A_1, A_2, \dots, A_n$, if $\Delta \vDash_{\mathcal{T}} A$ holds for some atom $A \notin \Delta$, then atom A can be added to the partial model. This process is called theory propagation.

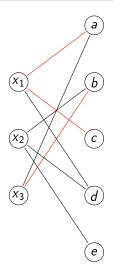
Theory propagations in all-different

- Vital edge belongs to all optimal matchings (equality propagated).
- Inconsistent edge doesn't belong to any optimal matching (disequality propagated).

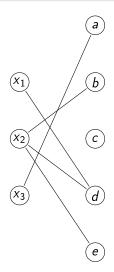


Notes

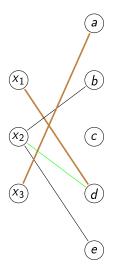
• Partial model: $x_1 = d, x_3 \neq b$.



- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.

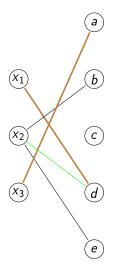


- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.



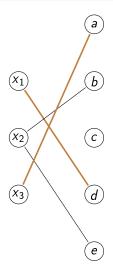
- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.
- Edges $x_3 = a, x_1 = d$ are vital. Edge $x_2 = d$ is inconsistent.

Theory propagations



- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.
- Edges $x_3 = a, x_1 = d$ are vital. Edge $x_2 = d$ is inconsistent.
- Propagation of atoms: $x_3 = a, x_2 \neq d$.

Theory propagations



- Partial model: $x_1 = d, x_3 \neq b$.
- Edges to remove: $x_1 = a, x_1 = c, x_3 = b$.
- Edges $x_3 = a, x_1 = d$ are vital. Edge $x_2 = d$ is inconsistent.
- Propagation of atoms: $x_3 = a, x_2 \neq d$
- Inconsistent edges can be removed from the graph.

Theory propagations

Finding vital and inconsistent edges

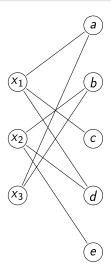
- Regin's filtering algorithm for all-different constraint (1994.).
- The algorithm executes in two graph traversals.

Definition

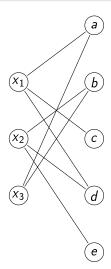
Given a partial model $\Delta = A_1, A_2, \ldots, A_k, \ldots, A_n$, if atom A_k is in model as a result of the theory propagation, then explanation of atom A_k is any subset Σ of $A_1, A_2, \ldots, A_{k-1}$ for which $\Sigma \vDash_{\mathcal{T}} A_k$ holds.

Theory propagations explaining in all-different

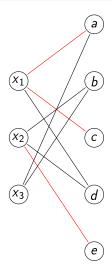
Atom A (equality or disequality) is implied (in all-different theory) by set of atoms Σ if and only if the edge corresponding to the atom A is vital or inconsistent in the graph state corresponding to the model $\Delta = \Sigma$.



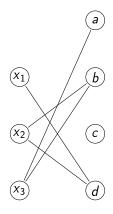
- Partial model: $x_1 = d, x_3 \neq b, x_2 \neq e, x_3 = a$.
- Atom $x_3 = a$ has been added to the model by the theory propagation.



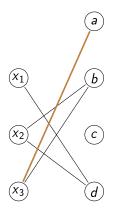
- Partial model: $x_1 = d, x_3 \neq b, x_2 \neq e, x_3 = a$.
- Atom $x_3 = a$ has been added to the model by the theory propagation.
- $x_1 = d, x_2 \neq e \models_T x_3 = a$, because...



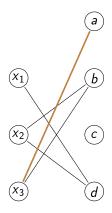
- Partial model: $x_1 = d, x_3 \neq b, x_2 \neq e, x_3 = a$.
- Atom $x_3 = a$ has been added to the model by the theory propagation.
- $x_1 = d, x_2 \neq e \models_T x_3 = a$, because... after removal of edges $x_1 = a, x_1 = c, x_2 = e$...



- Partial model: $x_1 = d, x_3 \neq b, x_2 \neq e, x_3 = a$.
- Atom $x_3 = a$ has been added to the model by the theory propagation.
- $x_1 = d, x_2 \neq e \models_T x_3 = a$, because... after removal of edges $x_1 = a, x_1 = c, x_2 = e$...



- Partial model: $x_1 = d, x_3 \neq b, x_2 \neq e, x_3 = a$.
- Atom $x_3 = a$ has been added to the model by the theory propagation.
- $x_1 = d, x_2 \neq e \vDash_T x_3 = a$, because... after removal of edges $x_1 = a, x_1 = c, x_2 = e$... edge $x_3 = a$ is vital.



- Partial model: $x_1 = d, x_3 \neq b, x_2 \neq e, x_3 = a$.
- Atom $x_3 = a$ has been added to the model by the theory propagation.
- $x_1 = d, x_2 \neq e \vDash_T x_3 = a$, because... after removal of edges $x_1 = a, x_1 = c, x_2 = e$... edge $x_3 = a$ is vital.
- Possible explanation: $x_1 = d, x_2 \neq e$.

Algorithm for finding minimal explanation

- The algorithm we propose can find explanation which is minimal in sense of inclusion.
- The algorithm is based on Regin's algorithm.
- Proposed algorithm is very efficient, because it executes in two graph traversals.

Outline

- Introduction to all-different constraint
- 2 Representation in first-order logic
- Our all-different SMT solver
- Future work and conclusions

Future work

Future work

- Our all-different T-solver is planned to be integrated into ArgoSMT, which is generic SMT platform in early stage of developement.
- Possible application: timetabling (teaching timetable for Faculty of Mathematics).

Conclusions

Conclusions

- All-different constraint: broad application area.
- SMT-approach: reducing all-different based problems to SAT.
- Efficient decision procedures based on matching theory.
- Theory propagations explaining: new efficient algorithm is proposed.