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Introduction

History overview

Probabilistic logics allow for strict reasoning about probabilities using
well-defined syntax and semantics

The formulas in these logics remain either true or false

Keisler: Probabilistic quantors (mid 70’s)

Nilsson, N.: Probabilistic logic. Articial intelligence 28, 7187 (1986)

Serbia: Miodrag Rašković
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Introduction

Probabilistic logics

Logic with a probabilistic operator - Probabilistic logic

P≥s , where s ∈ S ⊂ [0, 1]

(P≥sα ∧ P≥t(α→ β))→ P≥rβ

Kripke models with probability measures defined over worlds

Logic with a conditional probability operator

New operator CP(α, β)

Kolmogorov-style definition for conditional probabilities:
P(α|β) = P(α∧β)

P(β) ,P(β) > 0
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Introduction

Motivation

R. Fagin, J. Halpern, N. Megiddo. Logic for reasoning about probabilities.

Logic for linear weight formulas (LWF)

w(α) + 3w(β)− 5w(γ) > 0.2

weak completeness + decidability (NP)

Logic for polynomial weight formulas (PWF)

w(α)2w(β)− 5w(γ) > w(α)w(γ)

decidability (PSPACE)

Interpretation of polynomial weight formulas in first order logic

∀x(xw(α)2 + w(β) = 0.7)

weak completeness + decidability (EXPSPACE)
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Introduction

Goals for LPCP

Intermediate logic (with respect to LWF and PWF)

Strong completness (every consistent set of formulas is satisfiable)

Decidablity (PSPACE)
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Syntax

Var = {pn | n < ω} is the set of propositional variables.

ForC is the corresponding set of all propositional formulas over Var .

α, β and γ: variables used for denoting elements of ForC

Definition

The set Term of all probabilistic terms is recursively defined as follows:

Term(0) = {s | s ∈ Q} ∪ {CP(α, β) | α, β ∈ ForC}.
Term(n + 1) = Term(n) ∪ {(f + g), (s · g), (−f) | f, g ∈
Term(n), s ∈ Q}

Term =
∞⋃

n=0
Term(n). �
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Syntax

f, g and h: variables used for denoting terms

f + g = (f + g)

f + g + h = ((f + g) + h)

−f = (−f)

f− g = (f + (−g))

To simplify notation, we will write P(α) instead of CP(α,>), where > is
an arbitrary tautology instance.
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Syntax

Definition

A basic probabilistic formula is any formula of the form f > 0.
Furthermore, we define the following abbreviations:

• f 6 0 is −f > 0; • f > 0 is ¬(f 6 0); • f < 0 is ¬(f > 0);
• f = 0 is f 6 0 ∧ f > 0; • f 6= 0 is ¬(f = 0); • f > g is f− g > 0.

We define f 6 g, f > g, f < g, f = g and f 6= g in a similar way. �
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Syntax

A probabilistic formula is a Boolean combination of basic probabilistic
formulas.

ForP denotes the set of all probabilistic formulas.

φ, ψ and θ: variables used for denoting elements of ForP

For = ForC ∪ ForP

Φ,Ψ and Θ: variables used for denoting elements of For
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Semantics

We define the notion of a model as a special kind of Kripke model.
Namely, a model M is any tuple 〈W ,H, µ, v〉 such that:

W is a nonempty set. As usual, its elements will be called worlds.

H is an algebra of sets over W .

µ : H −→ [0, 1] is a finitely additive probability measure.

v : ForC ×W −→ {0, 1} is a truth assignment.

[α]M = {w ∈W | v(α,w) = 1}

We say that M is measurable if [α]M ∈ H for all α ∈ ForC .
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Semantics

Definition

Let M = 〈W ,H, µ, v〉 be any measurable model. We define the
satisfiability relation |= recursively as follows:

M |= α if v(α,w) = 1 for all w ∈W .

M |= f > 0 if fM > 0, where fM is recursively defined in the
following way:

sM = s.
CP(α, β)M = µ([α ∧ β]) · µ([β])−1.
(f + g)M = fM + gM .
(s · g)M = s · gM .
(−f)M = −(fM).

M |= ¬φ if M 6|= φ.

M |= φ ∧ ψ if M |= φ and M |= ψ. �

D. Doder et al. (MISANU) A Logic with a CP Operator Belgrade, 30-01-2009 15 / 35



Semantics

A formula Φ is satisfiable if there is a measurable model M such that
M |= Φ.

Φ is valid if it is satisfied in every measurable model.

The set T of formulas is satisfiable if there is a measurable model M
such that M |= Φ for all Φ ∈ T .
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Axiomatization

AXLPCP

Axioms for propositional reasoning

Axioms for probabilistic reasoning

Arithmetical axioms

Inference rules
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Axiomatization

Axioms for propositional reasoning

A1. τ(Φ1, . . . ,Φn), where τ(p1, . . . , pn) ∈ ForC is any tautology and Φi

are either all propositional or all probabilistic.
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Axiomatization

Axioms for probabilistic reasoning

A2. P(α) > 0;
A3. P(>) = 1;
A4. P(⊥) = 0;
A5. P(α↔ β) = 1 → P(α) = P(β);
A6. P(α ∨ β) = P(α) + P(β)− P(α ∧ β);
A7. (P(α ∧ β) = r ∧ P(β) = s)→ CP(α, β) = r · s−1, s > 0.

D. Doder et al. (MISANU) A Logic with a CP Operator Belgrade, 30-01-2009 20 / 35



Axiomatization

Arithmetical axioms

A8. r > s, whenever r > s; A16. s · (f + g) = (s · f) + (s · g)
A9. s · r = sr ; A17. r · (s · f) = r · s · f
A10. s + r = s + r ; A18. 1 · f = f
A11. f + g = g + f; A19. f > g ∨ g > f
A12. (f + g) + h = f + (g + h); A20. (f > g ∧ g > h)→ f > h
A13. f + 0 = f; A21. f > g → f + h > g + h
A14. f− f = 0; A22. (f > g ∧ s > 0) → s · f > s · g
A15. (r · f) + (s · f ) = r + s · f;
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Axiomatization

Inference rules
R1. From Φ and Φ→ Ψ infer Ψ.
R2. From α infer P(α) = 1.
R3. From the set of premises {φ → f > −n−1 | n = 1, 2, 3, . . . } infer
φ→ f > 0.

Notions of theorem and consistency are defined as usual. The only
difference is in the fact that the length of a proof may be countable.
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Soundness and Completeness

Overview

Using a straightforward induction on the length of the inference, it can be
easily shown that the above axiomatization is sound with respect to the
class of all measurable models.

In order to prove the completeness theorems for LPCP, we show that every
consistent set of sentences is satisfiable.

We will begin with Deduction theorem and some auxiliary statements

Then, we will describe how a consistent set T of sentences can be
extended to a suitable maximal consistent set

After that, we will show how a canonical model can be constructed
out of such maximal consistent sets

Finally, we prove that for every world w from the canonical model, a
sentence A is satisfied in w if and only if A ∈ w , and as a
consequence we obtain that the set T is satisfiable
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Soundness and Completeness

Theorem (Deduction theorem)

Suppose that T is an arbitrary set of formulas and that Φ,Ψ ∈ For . Then,
T ` Φ→ Ψ iff T ∪ {Φ} ` Ψ.

Lemma

Suppose that T is a consistent set of formulas. If T ∪ {φ→ f > 0} is
inconsistent, then there is a positive integer n such that
T ∪ {φ→ f < −n−1} is consistent.
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Soundness and Completeness

Definition

Suppose that T is a consistent set of formulas and that
ForP = {φi | i = 0, 1, 2, 3, . . . }. We define a completion T ∗ of T
recursively as follows:

1 T0 = T ∪ {α ∈ ForC | T ` α} ∪ {P(α) = 1 | T ` α}.
2 If Ti ∪ {φi} is consistent, then Ti+1 = Ti ∪ {φi}.
3 If Ti ∪ {φi} is inconsistent, then:

1 If φi has the form ψ → f > 0, then Ti+1 = Ti ∪ {ψ → f < −n−1},
where n is a positive integer such that Ti+1 is consistent.

2 Otherwise, Ti+1 = Ti . �
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Soundness and Completeness

Theorem

Suppose that T is a consistent set of formulas and that T ∗ is constructed
as above. Then:

1 T ∗ is deductively closed, id est, T ∗ ` Φ implies Φ ∈ T ∗.

2 There is φ ∈ ForP such that φ /∈ T ∗.

3 For each φ ∈ ForP , either φ ∈ T ∗, or ¬φ ∈ T ∗.
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Soundness and Completeness

Canonical Model

For the given completion T ∗, we define a canonical model M∗ as follows:

W is the set of all functions w : ForC −→ {0, 1} with the following
properties:

w is compatible with ¬ and ∧.
w(α) = 1 for each α ∈ T ∗.

v : ForC ×W −→ {0, 1} is defined by v(α,w) = 1 iff w(α) = 1.

H = {[α] | α ∈ ForC}.
µ : H −→ [0, 1] is defined by
µ([α]) = sup{s ∈ [0, 1] ∩Q | T ∗ ` P(α) > s}.
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Soundness and Completeness

Lemma

M∗ is a measurable model.

Theorem (Strong completeness theorem)

Every consistent set of formulas has a measurable model.
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Decidability

Theorem

Satisfiability of probabilistic formulas is decidable and it is decidable in
PSPACE.

Rewriting to PWF in linear time:

CP(α, β) ≡ w(α ∧ β)

w(β)
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Decidability

Example (CP(α, β) + CP(α, γ) > 1
2)

P(α ∧ β)

P(β)
+

P(α ∧ γ)

P(γ)
>

1

2

α ∧ β ⇔ (α ∧ β ∧ γ) ∨ (α ∧ β ∧ ¬γ)
α ∧ γ ⇔ (α ∧ β ∧ γ) ∨ (α ∧ ¬β ∧ γ)
β ⇔
(α∧β∧γ)∨(α∧¬β∧¬γ)∨(¬α∧β∧γ)∨(¬α∧β∧¬γ)
γ ⇔
(α∧β∧γ)∨(α∧¬β∧γ)∨(¬α∧β∧γ)∨(¬α∧¬β∧γ)

x1 = P(α ∧ β ∧ γ)
x2 = P(α ∧ β ∧ ¬γ)
x3 = P(α ∧ ¬β ∧ γ)
x4 = P(α ∧ ¬β ∧ ¬γ)
x5 = P(¬α ∧ β ∧ γ)
x6 = P(¬α ∧ β ∧ ¬γ)
x7 = P(¬α ∧ ¬β ∧ γ)
x8 = P(¬α ∧ ¬β ∧ ¬γ)

∃x1 . . . x8

(
8∧

i=1

xi > 0 ∧
8∑

i=1

xi = 1 ∧ x1 + x2

x1 + x2 + x5 + x7
+

x1 + x3

x1 + x3 + x5 + x7
>

1

2

)
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α ∧ β ⇔ (α ∧ β ∧ γ) ∨ (α ∧ β ∧ ¬γ)
α ∧ γ ⇔ (α ∧ β ∧ γ) ∨ (α ∧ ¬β ∧ γ)
β ⇔
(α∧β∧γ)∨(α∧¬β∧¬γ)∨(¬α∧β∧γ)∨(¬α∧β∧¬γ)
γ ⇔
(α∧β∧γ)∨(α∧¬β∧γ)∨(¬α∧β∧γ)∨(¬α∧¬β∧γ)

x1 = P(α ∧ β ∧ γ)
x2 = P(α ∧ β ∧ ¬γ)
x3 = P(α ∧ ¬β ∧ γ)
x4 = P(α ∧ ¬β ∧ ¬γ)
x5 = P(¬α ∧ β ∧ γ)
x6 = P(¬α ∧ β ∧ ¬γ)
x7 = P(¬α ∧ ¬β ∧ γ)
x8 = P(¬α ∧ ¬β ∧ ¬γ)

∃x1 . . . x8

(
8∧

i=1

xi > 0 ∧
8∑

i=1

xi = 1 ∧ x1 + x2

x1 + x2 + x5 + x7
+

x1 + x3

x1 + x3 + x5 + x7
>

1

2

)
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Checkers and Provers

Zoran Ognjanović, Jozef Kratica, Miloš Milovanović, A genetic
algorithm for satisfiability problem in a probabilistic logic: A first
report, 2001.

Zoran Ognjanović, Uroš Midić, Jozef Kratica, A genetic algorithm for
probabilistic SAT problem, 2004.

Zoran Ognjanović, Uroš Midić, Nenad Mladenović, A Hybrid Genetic
and Variable Neighborhood Descent for Probabilistic SAT Problem,
2005.

Dejan Jovanović, Nenad Mladenović, Zoran Ognjanović, Variable
Neighborhood Search for the Probabilistic Satisfiability Problem, 2007

To be done: Checker for LPCP (VNS and parallelization)
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