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Overview

Viewing Isabelle/HOL as a functional programming language:
1. Isabelle/HOL Specification Tools.
2. Code Generation from Isabelle/HOL-Theories.
3. Behind the Scene.
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The definitional game

Aim: write “programs” in Isabelle/HOL as naturally as in, say, SML . . .
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but it’s not enough just to claim arbitrary things:

axiomatization nonsense :: nat ⇒ nat where
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lemma 0 = Suc 0

proof −
from nonsense-def
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proof −
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then show 0 = Suc 0 by simp

qed

Things have to be properly constructed, that is:
• Find an appropriate primitive definition.
• Derive desired specification (honest toil).
Specification tools automate this.
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The Isabelle/HOL toolbox

Isabelle/HOL SML / OCaml / Haskell

specification tools

code generation

inductive predicates Knaster-Tarski fixed point theorem
inductive datatypes inductive predicate plus typedef
primitive recursion primitive recursion combinator
terminating functions explicit function graph plus definite choice
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Type classes

Leightweight mechanism for overloading plus abstract specification.

Example: algebra
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Code generator basics



Code generation paradigms

proof extraction animates proof derivations in the spirit of the Curry-
Howard isomorphism (cf. Coq)
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Code generation using shallow embedding

Correctness criterion: semantics of generated target language program
P describes a term rewrite system where each derivation can be simulated
in the theory Θ of the logic:

sum [Suc Zero_nat, Suc Zero_nat]

Suc (Suc Zero_nat)

datatype nat = Suc of nat | Zero_nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

fun sum [] = Zero_nat
| sum (m :: ms) = plus_nat m (sum ms);

t t

u u

EΘ EPcode generation

identification

identification
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(partial correctness)
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Examples

• amortised queues

• amortised queues with poor man’s datatype abstraction
• algebra with type classes
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How does a code generator look like?
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Architecture

Isabelle/HOL tools Isabelle theory

code equations

intermediate languageserialisation

SML

OCaml

. . .

Haskell

selection

preprocessing

translation
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Intermediate language

purpose: add “structure” to bare logical equations
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Intermediate language

purpose: add “structure” to bare logical equations

data κ αk = f 1 of τ1 | . . . | f n of τn

fun f :: ∀ α::sk. τ where
f [α::sk] t1 = t1

| . . .
| f [α::sk] tk = tk

class c ⊆ c1 ∩ . . . ∩ cm where
f 1 :: ∀α. τ1, . . ., f n :: ∀α. τn

inst κ α::sk :: c where
f 1 [κ α::sk] = t1, . . ., f n [κ α::sk] = tn

. . . a kind of “Mini-Haskell”
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| . . .
| f [α::sk] tk = tk

class c ⊆ c1 ∩ . . . ∩ cm where
f 1 :: ∀α. τ1, . . ., f n :: ∀α. τn

inst κ α::sk :: c where
f 1 [κ α::sk] = t1, . . ., f n [κ α::sk] = tn

. . . a kind of “Mini-Haskell”

. . . not “All-gol”, but “Thin-gol”
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Selecting

Two degrees of freedom:

code equations
by default: definition, primrec, fun, function
explicitly: attribute [code]

datatype constructors
by default: datatype, record
explicitly: code-datatype
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Preprocessing

Interface to plugin arbitrary theorem transformations:

rewrites
simpset

function transformators
theory -> thm list -> thm list
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Serialising

Adaption to target-language specifics:
• improving readability and aesthetics of generated code (bools, tuples,

lists, . . . )
• gaining efficiency (target-language integers)
• interface with language parts which have no direct counterpart in HOL

(imperative data structures)
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Remember the fundamental rule of software engineering:

Don’t write your own foo; if you can, use somebody else’s.

foo ∈ { operating system, garabage collector, cryptographic algorithm,
concurrency framework, theorem prover, . . . }
∪ {serialisation}
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What remains

Not mentioned here

• implementing equality
• code extraction from proofs

Ongoing work and research

• turning inductive predicates into equations
• Haskabelle: importing Haskell files
• Quickcheck
• concept for datatype abstraction

Further reading

• Tutorials in the Isabelle distribution for functions, code generation
etc.
• PhD thesis on code generation (under heavy construction. . . )

. . .
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Happy proving, happy hacking
Thanks for your attention


