
Validating Decision Procedures for Coq in Coq

Hugo Herbelin

1

Coq in a nutshell

- A logical formalism that is also a typed programming language: the Calculus of Inductive
Constructions [Coquand-Paulin 1988]

- A verifier that checks that proofs are correct and programs are well-typed

On top of this:

- A concrete language of functions and specifications, e.g.:

Inductive formula :=
| Lit (b:bool) (s:string)
| And (f1 f2:formula)
| Or (f1 f2:formula).

Fixpoint negate f := match f with
| Lit b s => Lit (negb b)
| And f1 f2 => Or (negate f1) (negate f2)
| Or f1 f2 => And (negate f1) (negate f2)
end. e

- A language of semi-interactive tactics to solve specifications and theorems

Theorem negate_involutive : forall f, negate (negate f).
Proof. induction f as [[] | |]; simpl; f_equal; auto. Qed.

2

Top applications

- Certification of a C compiler (X. Leroy and the CompCert project)

- Full formalization of the 4-color theorem proof (G. Gonthier + B. Werner)

- Extensive constructive mathematics (Nijmegen’s constructive repository of mathematics)

- Certification of a commercial JavaCard applet (GemAlto)

- Certification of large numbers primality (INRIA)

- see http://coq.inria.fr, link contributions ...

3

The Calculus of Inductive Constructions verifier

- Proofs have a concrete representation in Natural Deduction using the notations of λ-calculus:

Example:

fun (A B : Prop) (H : A /\ B) =>
match H with
| conj _ HB => or_introl HB
end

is a proof of

forall A B : Prop, A /\ B -> B \/ A

4

The Calculus of Inductive Constructions verifier

- Proofs have a concrete representation (proof-terms):

Example:

fun (A B : Prop) (H : A /\ B) =>
match H with
| conj HA _ => or_intror HA
end

is another proof of

forall A B : Prop, A /\ B -> B \/ A

5

The Calculus of Inductive Constructions verifier

- Proofs have a concrete representation (proof-terms):

Example:

fun (A B : Prop) (H : A /\ B) =>
match H with
| conj HA _ => or_intror HA
end

is another proof of

forall A B : Prop, A /\ B -> B \/ A

- Coq provides a stand-alone verifier that can recheck, and re-certify proofs produced by another
Coq session.

6

The “mathematical” proof language (C-zar)

Theorem negate_involutive : forall f, negate (negate f) = f.
proof.

assume f:formula.
per induction on f.

suppose it is (Lit true s).
thus thesis.
suppose it is (Lit false s).
thus thesis.
suppose it is (And f1 f2) and IH1: thesis for f1 and IH2: thesis for f2.
reconsider thesis as

(And (negate (negate f1)) (negate (negate f2)) = And f1 f2).
thus thesis by IH1, IH2.
suppose it is (Or f1 f2) and IH1: thesis for f1 and IH2: thesis for f2.
reconsider thesis as

(Or (negate (negate f1)) (negate (negate f2)) = Or f1 f2).
thus thesis by IH1, IH2.

end induction.
end proof.
Qed.

7

Main approaches to automation

• full reflexion using Coq as a programming language

↪→ now using the built-in ocaml-style bytecode (strong) interpreter [B. Grégoire] and the
mapping of integers to machine words [A. Spiwack]

• trace-based reflexion: the decision procedure returns a compact proof in its own language
and a Coq function maps the proof language of the decision procedure to a Coq proof-term

• shallow embedding of the decision procedure proof steps as Coq proof steps

– in ocaml, statically linked to Coq

– in ocaml, dynamically linked to Coq (using ocaml 3.11 plugin mechanism)

– in Ltac, the user-level tactic language of Coq

– external communication with Coq (XML syntax)

8

Main automation procedures in Coq

• Decision of intuitionistic first-order logic [C. Muñoz, D. Delahaye, P. Corbineau]

• Decision of closed equations by congruence closure [P. Corbineau]

• Decision of Presburger arithmetic (Pugh, 1992, quantifier-free, w/o dark shadow, “deep
embedding” + experimental trace-based reflexion) [P. Crégut]

• Decision of equality of polynomial expressions (full reflexion) [S. Boutin, P. Loiseleur, A. Mah-
boubi, B. Grégoire, B. Barras]

• Decision of equality of polynomial fractions (full reflexion) [D. Delahaye, M. Mayero, L. Théry,
B. Grégoire]

• Fourier-Motzin on Q and R (deep embedding [L. Pottier] + reflexion [F. Besson])

• Sums-of-squares based approximated decision of closed real fields (csdp try to find certificates
for the Positivstellensatz Theorem, verification by polynomial simplification)

• Nullstellensatz Theorem using Gröbner bases [L. Pottier, independent release]

• Support for Maple simplification tools [D. Delahaye, M. Mayero, independent release]

• Resolution [C. Paulin-Mohring]

9

• Various dedicated procedures: theory of finite sets [P. Letouzey], inequalities between real
numbers [R. O’Connor, G. Melquiond, R. Zumkeller] with application to the proof of Kepler’s
conjecture; preprocessing of advanced arithmetical operations (min, max, ...), ...

• SMT solving [S. Conchon, E. Contejean, S. Lécuyer, work in progress]

• + uncertified support for CVC3, Z3, Simplify, Zenon, haRVey for use in the program
certification platforms Why, Krakatoa and Caduceus [J.-C. Filliâtre, C. Marché, C. Paulin-
Mohring].

• ...

10

A certified SMT solver

S. Conchon, E. Contejean, 2006: Alt Ergo, a purely functional implemetation of a modular
classical proposition solver modulo theories, including Fourier-Motzin and congruence closure (...
lines of Objective Caml).

S. Lécuyer, in progress: implementation of the underlying SAT solver in Coq (reflexion) experi-
mentation

11

