
Automated Reasoning for
Reliable Software

Viktor Kuncak
École Polytechnique Fédérale de Lausanne

Importance of Software Reliability

October 2007

Cryosat, a satelite worth
135’000’000 €

sketch from BBC and ESA

program satisfies
the properties

error in program
(or property) !

. . .
void remove(x : Node) {

Node prev = null;
Node current = root;
while (current != null) {
if (current = x) ...
else if (current.data < ...
else if (current.data > ...

,,,,

x.next.prev = x

tree is sorted
program
properties

Java source code

Program Verification for Reliability

Program Verifier
Jahob

Data Structure Properties: Examples

next

prev

next next

prev prev

root

acyclicity: ~next+(x,x)

x.next.prev == x

rightleft graph is a treeshape not given by types,
may change over time

unbounded number of objects, dynamically allocated

rightleft

class Node {
Node f1, f2;

}

elements are sorted

next nextfirst

3
size value of size field is

number of stored objects
size = |{x. next*(first,x)}|

table

key value

node is stored in the bucket
given by the hash of node’s key

hashCode

hash table properties:

numerical constraints:

4
size

Data Structure Properties: Examples

Data Structure Verification using Jahob
Verified properties of
- hash table
- space subdivision tree
- linked list
- array-based list
- priority heap

More information:
http://JavaVerification.org

Full Functional Verification of Linked Data Structures
ACM Conf. Prog. Language Design and Implementation’08

Karen Zee, MIT

Martin C. Rinard, MIT

http://javaverification.org/

Jahob Statically Enforces Contracts

Method Summary
void add(int index, Object element)

Inserts the specified element at the specified position in this list.

boolean add(Object element)
Appends the specified element to the end of this list.

ArrayList documentation from http://java.sun.com :

ArrayList verified contract from http://JavaVerification.org :

void add(int index, Object element)
content = {(i,e). (i,e) : old content ∧ i < index} ∪ {(index,element)}

∪ {(i,e). (i-1,e) : old content ∧ index < i}
boolean add(Object element)

content = old content ∪ {(size,element)}

http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28int,%20java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/
http://javaverification.org/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28int,%20java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

Linked List Implementation
class List {
private List next;
private Object data;
private static List root;
private static int size;

public static void addNew(Object x) {
List n1 = new List();
n1.next = root;
n1.data = x;
root = n1;
size = size + 1;

}
}

nextnext next

root

data data data data

x

Specifying Linked List in Jahob

nodesnextnext nextroot

data data data data
content

Abstract the list with its content (data abstraction)

List.java Screenshot

public interface is simple
specs as verified comments

Isabelle/HOL as formula language

List n1 = new List();
n1.next = root;
n1.data = x;
root = n1;
size = size + 1;

//: nodes = nodes ∪ {n1}

addNew Verification Condition for size

nodes
nextnext next

root

data data data data

x content

next0, data0, size0,
nodes0, content0

next, data, size, nodes, content
next=next0[n1:=root0] ∧ data=data0[n1:=x] ∧ …

MONA: nodes = nodes0 ∪ {n1}
SPASS: content = content0 ∪ {x}
BAPA: |content| = |content0| + 1

∴ |{data(n) | (n1,n) ∈ next*} | =
|{data0(n) | (root0,n) ∈ next0*}| + 1

set vars generalize
purification in SMT

recently: decidability
of combination

Verifying the addNew Method

Verification steps
• generate verification condition (VC) in HOL stating
“The program satisfies its specification”

• split VC into a conjunction of smaller formulas Fi

• approximate each Fi with stronger F’i in HOL subset
prove each F’i conjunct w/ SPASS,MONA,BAPA

Jahob
List.java

SPASS

MONA

BAPA

F1 & F2 & F3

F1

F2

F3

Verifying the addNew Method

Jahob
List.java

SPASS

MONA

BAPA

F1 & F2 & F3

F1

F2

F3

Jahob Verifier
Verifies programs in Java subset (input - valid Java)
Specifications written in subset of Isabelle/HOL
Jahob proves

– data structure preconditions,
postconditions (can relate to ‘old’ values in pre)

– data structure invariants
– absence of run-time errors

Observation:
automation in such verification is limited by
automated reasoning techniques
for proving verification-condition formulas

Jahob Verifier Overview

Field constraint
analysis

Reasoning About
Collections and Sizes

Translation to
first-order logic

first-order
provers

MONA
decision procedure

Presburger Arithmetic
decision procedure

Isabelle

SMT
provers

front end,
verification condition generator

(requires loop invariants)

combination
technique

reasoning about expressive formulas

Jahob’s combination method

1) Split verification condition(vc) into conjuncts
vc is an implication, e.g. pre & code post
Transform implication into conjunction of implications

A G1 & G2 A G1, A G2
A (B G) (A & B) G
A ∀ x.G A G[x:=xfresh]

2) Approximinate each conjunct w/ stronger formula
in more tractable logic (recursive walk)

3) Prove each conjunct using a prover
(try all provers in sequence or in parallel)

Range of sound approximations

Worst: a(F) = False (useless)

Best: a(F) = if “F is valid” then True else False (impossible)

General idea of our approximations:
a(F) = a1(simplify(F))
ap(F1 Æ F2) = ap(F1) Æ ap(F2)
ap(F1 Ç F2) = ap(F1) Ç ap(F2)
ap(¬ F) = ¬ a¬p(F)
ap(goodF) = translation of goodF
a1(badF) = False
a0(badF) = True

Properties of splitting
– introduces only quadratic blowup
– exploits vc structure: many paths, invariants
– parallelization opportunities

Property of approximation
– unsupported assumptions thrown away
– sound, incomplete

Lemmas about sets enable combination
– user supplied or generated by static analysis

Properties of this method

Jahob Verifier Overview

Field constraint
analysis

Reasoning About
Collections and Sizes

Translation to
first-order logic

first-order
provers

MONA
decision procedure

Presburger Arithmetic
decision procedure

Isabelle

SMT
provers

front end,
verification condition generator

(requires loop invariants)

combination
technique

reasoning about expressive formulas

Field Constraint Analysis

Approximation of HOL with WS2S formulas
Automates reasoning about reachability
Effective on formulas of the form:

(tree[f1,f2] &
ALL x. h1(x)=y F1(x,y) &
ALL x. h2(x)=y F2(x,y)) G(f1,f2,h1,h2)

f1,f2 – backbone h1,h2 – derived
Such form enforced by class invariants
Soundness and (often) completeness

Jahob Verifier Overview

Field constraint
analysis

Reasoning About
Collections and Sizes

Translation to
first-order logic

first-order
provers

MONA
decision procedure

Presburger Arithmetic
decision procedure

Isabelle

SMT
provers

front end,
verification condition generator

(requires loop invariants)

combination
technique

reasoning about expressive formulas

formula is valid

formula has a
counterexample

|A ∪ B| ≤ |A|+|B|

formula in a
decidable logic

New Decision Procedures

Decision
Procedure

Can we build such algorithms?
- useful implementations
(used within larger systems)

- worst-case complexity limitations

F

Complexity Map of Some Logics
UNDECIDABLE

Isabelle/HOLFirst-Order Logic (FOL)

NP-Complete

Two-Variable FOL ∀*-FOL-rel
NEXPTIME

SAT(¬ ,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å ,\)

BA(∀Å\)

BAPA(∀Å\+)

DECIDABLE

term
algebra

PA(∀+)

term
powers

(LICS’03)

PSPACE
EXPTIME

Boolean Algebra with Presburger Arithmetic

Essence of decidability: Feferman, Vaught 1959
Our results

– first implementation for BAPA (CADE’05)
– first, exact, complexity for full BAPA (JAR’06)
– polynomial-time fragments of QFBAPA (FOSSACS’07)
– first, exact, complexity for QFBAPA (CADE’07)
– generalize to multisets (VMCAI’08,CAV’08,CSL’08)

S ::= V | S1 ∪ S2 | S1 Å S2 | S1 \ S2
T ::= k | C | T1 + T2 | T1 – T2 | C·T | card(S)
A ::= S1 = S2 | S1 ⊆ S2 | T1 = T2 | T1 < T2
F ::= A | F1 Æ F2 | F1 Ç F2 | ¬F | ∃S.F | ∃k.F

card(A ∪ B) = p Æ card(B Å C) = q
x1 + x2 + x3 + x5 + x6 + x7 = p Æ x6 + x7 = q

Deciding BAPA: set vars int vars
– generate equisatisfiable PA formula
– exponentially many variables (for each Venn region)

Works for quantified and quantifier free case

From BAPA to Linear Arithmetic

23

6
1

4

A B

C
5 7

Exact Complexity of BAPA (JAR’06)
UNDECIDABLE

Isabelle/HOLFirst-Order Logic (FOL)

NP-Complete

Two-Variable FOL ∀*-FOL-rel
NEXPTIME

SAT(¬ ,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å ,\) BA(∀Å\):

BAPA(∀Å\+):

DECIDABLE term algebra:
22^...

PA(∀+):
PSPACE

EXPTIME

space 22^O(n)

space 2O(n)

quantifier
elimination

BAPA
S ::= V | S1 ∪ S2 | S1 Å S2 | S1 \ S2
T ::= k | C | T1 + T2 | T1 – T2 | C·T | card(S)
A ::= S1 = S2 | S1 ⊆ S2 | T1 = T2 | T1 < T2
F ::= A | F1 Æ F2 | F1 Ç F2 | ¬F

Quantifier-Free

Why is quantifier-free fragment useful?
BAPA has quantifier elimination

(algorithm: formula equivalent Q.F. formula)
We can express same relations using quantifier-free formulas
Verification conditions are often quantifier-free
x ∉ content0 Æ content = content0 ∪ {x}

cardinality(content) = cardinality(content0) + 1

Puzzles with Sets and Cardinalities

card(U)=8 Æ F∪E=U Æ 4card(FÅT)=3card(U) Æ
2card(F\T) = card(F\E) Æ card(F\E)=card(E\F)

F E

T

8 students applied to a PhD program. Each of them speaks
French or English and 3/4 of them speak both French and
English. Among those speaking French, there are twice as
many of those not in top 5% of their master’s studies as those
that do not speak English.
The number of students who speak
French but not English is the same
as number of those who speak
English but not French.
Is this situation possible? If so,
how many students speak French,
English and are in top 5%? card(FÅEÅT)>0?

Exact Complexity of QFBAPA ?
UNDECIDABLE

Isabelle/HOLFirst-Order Logic (FOL)

NP-Complete

∀*-FOL-rel
NEXPTIME

SAT(¬,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å,\)

BA(∀Å\)

BAPA(∀Å\+)

DECIDABLE
PA(∀+)

PSPACE
EXPTIMEQFBAPA(Å\+)

?

Underlying Integer Programming Problem

x1 + x2 + x3 + x5 + x6 + x7 = p
. . .

x6 + x7 = q

n equations

2n variables

Integer linear programming problem: for non-negative xi

Are there sparse solutions where O(nk) variables are non-zero?
for reals - yes, matrix rank is O(n)
for non-negative reals
for non-negative integers

- yes, theory of LP
- Eisenbrand, Shmonin’06

Exact Complexity of QFBAPA (CADE’07)
UNDECIDABLE

Isabelle/HOLFirst-Order Logic (FOL)

NP-Complete

∀*-FOL-rel
NEXPTIME

SAT(¬ ,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å ,\)

BA(∀Å\)

BAPA(∀Å\+)

DECIDABLE
PA(∀+)

PSPACE
EXPTIME

QFBAPA(Å\+)

Sets and Multisets in Abstraction
nextnext next

root

data data data data

a b c
content
as set

content = {a,b,c}

mcontent
as

multiset
a b b c

mcontent = {|a,b,b,c|} card(mcontent)=4

card(content)=3

U {0,1}

U {0,1,2,...}

C = C0 ∪ {x} card(C)=card(C0) + 1+

Reasoning about Collections and Sizes

Decision Procedures for Multisets with Cardinality Constraints,
Verification, Model Checking, and Abstract Interpretation, 2008

Linear Arithmetic with Stars, Computer Aided Verification, 2008

Fractional Collections with Cardinality Bounds and
Mixed Integer Linear Arithmetic with Stars,
Computer Science Logic, 2008

work with

Ruzica Piskac, 2nd year
PhD student in my group

generalized from sets to multisets

Complexity of Quantified Multisets?
UNDECIDABLE

Isabelle/HOLFirst-Order Logic (FOL)

NP-Complete

∀*-FOL-rel
NEXPTIME

SAT(¬ ,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å ,\)

BA(∀Å\)

BAPA(∀Å\+)

DECIDABLE
PA(∀+)

PSPACE
EXPTIME

QFBAPA(Å\+)

quantified
multiset
formulas

?

Complexity of Quantified Multisets

UNDECIDABLE

Exact Complexity of QFMAPA ?
UNDECIDABLE

First-Order Logic (FOL) quantified multisets+card

NP-Complete

∀*-FOL-rel
NEXPTIME

SAT(¬,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å,\)

BA(∀Å\)

BAPA(∀Å\+)

DECIDABLE
PA(∀+)

PSPACE
EXPTIMEQFMAPA

?

From Collections to Stars
Check satisfiability of

|x|=1 Æ L1=L x Æ |L1| ≠ |L|+|x|
(negation of a verification condition)

Normal form:
(1,k,k1) = ∑{(x(e),L(e),L1(e))| e ∈ E} Æ
∀e. L1(e)=L(e)+x(e) Æ k1 ≠ k+1

This is equisatisfiable with
(1,k,k1) ∈ {(x,L,L1)| L1=L+x}* Æ k1 ≠ k+1

(Such transformation works in general.)

Integer Linear Arithmetic with Star

Decidability: each formula describes
semilinear set, i.e. union of sets of the form

{a} + {b1,…,bn}*
Semilinear sets are closed under *
Computing semilinear sets: NEXPTIME
Using sparseness, and bounds on a,b

NP (CAV’ 2008)
Application to transition system reachability

Summary of Decision Procedure Results
UNDECIDABLE Isabelle/HOL

First-Order Logic (FOL)

NP-Complete

∀*-FOL-rel
NEXPTIME

SAT(¬,Æ)

QF PA(+)

QF FOL
∀K-FOL-rel

QF BA(Å,\)

BA(∀Å\)

BAPA(∀Å\+)

DECIDABLE
PA(∀+)

PSPACE
EXPTIME

QFBAPA(Å\+)

quant.multisets

QFMAPA

Jahob Verifier Overview

Field constraint
analysis

Reasoning About
Collections and Sizes

Translation to
first-order logic

first-order
provers

MONA
decision procedure

Presburger Arithmetic
decision procedure

symbolic
shape analysis

Isabelle

SMT
provers

front end,
verification condition generator

(requires loop invariants)

combination
technique

proofs within
programs

Proofs within Programs in Jahob

difficult vc

program

spec

proof script

vc gen Isabelle

easier vc

program

spec
vc gen automated

provers

proof
commands

Claim: proof commands fit well within programs

one approach in Jahob:

alternative approach:

Guarded Commands and wp
Basis for verification condition generation

programs + spec guarded commands
Command c: wp(c,G):

assume F F G
assert F F & G
havoc x ALL x. G
[] &

Proof commands corresponding to FOL
(intro and elimin for binders, and,or,not)

Soundness, completeness for FOL

Jahob Verifier

Summary: http://javaverification.org
Jahob: a (data structure) verification system
Verified: lists, trees, hash tables, queues, clients
Proving validity of expressive formulas (HOL subset)

by combining multiple reasoning techniques
Reasoning about collections with cardinality
Proofs within programs

Laboratory for Automated Reasoning
http://lara.epfl.ch

EPFL School of Computer and Communication Sciences
http://ic.epfl.ch

EPFL PhD Program : http://phd.epfl.ch/edic

http://javaverification.org/
http://lara.epfl.ch/
http://ic.epfl.ch/
http://phd.epfl.ch/edic

	Automated Reasoning for Reliable Software
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Data Structure Verification using Jahob
	Jahob Statically Enforces Contracts
	Linked List Implementation
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Jahob’s combination method
	Range of sound approximations
	Properties of this method
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Complexity Map of Some Logics
	Boolean Algebra with Presburger Arithmetic
	From BAPA to Linear Arithmetic
	Exact Complexity of BAPA (JAR’06)
					BAPA
	Puzzles with Sets and Cardinalities
	Exact Complexity of QFBAPA ?
	Underlying Integer Programming Problem
	Exact Complexity of QFBAPA (CADE’07)
	Slide Number 33
	Reasoning about Collections and Sizes
	Complexity of Quantified Multisets?
	Slide Number 36
	Exact Complexity of QFMAPA ?
	From Collections to Stars
	Integer Linear Arithmetic with Star
	Summary of Decision Procedure Results
	Slide Number 41
	Slide Number 42
	Proofs within Programs in Jahob
	Guarded Commands and wp
	Slide Number 45
	Summary: http://javaverification.org

