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Radio Therapy

Between June 1985 and January 1987, a computer-controlled radiation ther-
apy machine, called the Therac-25, massively overdosed six people. These
accidents have been described as the worst in the 35-year history of medical
accelerators [6].

Nancy Leveson
Safeware: System Safety and Computers
Addison-Wesley, 1995

Life-Critical Medical Devices




Program Verification for Reliability

rogram satisfies
Java source code Prog \/

the properties
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Data Structure Properties: Examples

unbounded number of objects, dynamically allocated

root ~< next next next

7 Y >
< -\ ) — -\ e '
N

prev  prev  prev

X.next.prev ==

acyclicity: ~next*(x,x)

shape not given by types,
may change over time

right graph is a tree

elements are sorted
class Node {

Node f1, f2;
}



Data Structure Properties: Examples

hash table properties:

table
size L,Q node is stored in the bucket
4 given by the hash of node’s key
_’@ key value
el

numerical constraints:

first next next _ _ _
size C )_’Q value of size field is
3 number of stored objects

size = |[{x. next*(first,x)}|




Data Structure Verification using Jahob

Verified properties of
- hash table
- space subdivision tree
- linked list
- array-based list
- priority heap
More information:
http://JavaVerification.org

Karen Zee, MIT

Martin C. Rinard, MIT

Full Functional Verification of Linked Data Structures
ACM Conf. Prog. Language Design and Implementation’08


http://javaverification.org/

Jahob Statically Enforces Contracts

ArrayList documentation from hiip://java.sun.com :

Method Summary

void

add(int index, Object element)
Inserts the specified element at the specified position in this list.

boolean

add(Object element)
Appends the specified element to the end of this list.

ArrayList verified contract from hitp://JavaVerification.orqg :

void

add(int index, Object element)
content = {(i,e). (i,e) : old content A i <index} u {(index,element)}
v {(i,e). (i-1,e) : old content A index < i}

boolean

add(Object element)
content = old content U {(size,element)}



http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28int,%20java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/
http://javaverification.org/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28int,%20java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

Linked List Implementation

class List {
private List next;
private Object data;
private static List root;
private static Int size;

public static void addNew(Object x) {
List n1 = new List();

root
N1.next = root; |
nl.data = Xx; next | next next
—Q0— 9@
size = si1ze + 1;
y ¥ data |data |data |data

® O O O



Specifying Linked List in Jahob

root next next next nodes

O—O0 O ©

data data data data

C) C') O C) content

Abstract the list with its content (data abstraction)



class List &

private List next; List.java Screenshot
private UObject data;

specs as verified comments

private static List root; . : :
orivate static int size; public interface is simple

('f*:

private static ghost specvar nodes :: objset;

public static ghost specwvar content :: objset;

invarliant
< 1nvariant

invariant
invariant
invariant
invariant
invariant

_ */

nodesDef: "nodes = {n. n = null A {(root,n) £ {{u,
contentDef: "content = {x. I n. x = List.data n »

sizelnv: "size = cardinality content”;

treelnv: "tree [List.next]";

rootInv: "root = null — (¥ n, List.next n # roo
rnodesAlloc: "nodes € Object.,alloc™;

contentAlloc: "content € Object.alloc”;

public static wvolid addMew(Ob,ject =)
J¥: reguires " (x € content)}”
modifiles content

ensures "content = old content U {x}"
i
T .
List nl = rnew List();  |sgbelle/HOL as formula language
nl.next = root;

Al Hdats

gt



addNew Verification Condition for size

nextO, dataO, sizeO, root
nodesO, contentO ‘

List n1 = new List(); 1 next nhext  next

nl.next = root; Q@ — Q@ —@ —@ nodes

nl.data = X;
root = ni: data |data |data |data

- - ) 4
= + -

//: nodes = nodes U {nl}
next, data, size, nodes, content

next=nextO[n1:=root0] A data=datalO[n1:=x] A ... 2

MONA: nodes = nodes0 U {n1}
SPASS: content = content0 U {x}
BAPA: |content| = |contentO| + 1

. [{data(n) [ (n1,n) € next™} | = refcentl%:/):_ detg:idability
" {dataO(n) | (root0,n) e next0*} +1  ° comPination

set vars generalize
purification in SMT




Verifying the addNew Method

List.java

.. ASbhind Jahoblopt List. java
—method List.addMew —-usedp spass mona bapa

Verification steps

* generate verification condition (VC) in HOL stating
“The program satisfies its specification”

» split VC into a conjunction of smaller formulas F,

 approximate each F, with stronger F’. in HOL subset
prove each F’. conjunct w/ SPASS,MONA BAPA



Verifying the addNew Method

List.java

.. ASbhind Jahoblopt List. java
—method List.addMew —-usedp spass mona bapa

Built-1n walidity checker proved £ sequents durling splitting.
sFPASS proved 5 out of & sequents. Total time @ 0.2 s
MOMA proved 2 out of 3 seguents. Total time @ 0.7 s
EAFA proved 1 out of 1 segquents. Total time @ 0.0 s

A total of 10 sequents out of 10 proved.
:List.addNew]
=== Veriftication SUCCEEDED.



Jahob Verifier

Verifies programs in Java subset (input - valid Java)
Specifications written in subset of Isabelle/HOL
Jahob proves

— data structure preconditions,
postconditions (can relate to ‘old’ values in pre)

— data structure invariants
— absence of run-time errors
Observation:

automation in such verification is limited by
automated reasoning technigues

for proving verification-condition formulas



Jahob Verifier Overview

front end,
verification condition generator

(requires loop invariants)

v
combmaﬂon » Isabelle
technique
Translation to Field constraint Reasoning About
first-order logic analysis Collections and Sizes
SMT first-order MONA Presburger Arithmetic
provers provers decision procedure decision procedure

reasoning about expressive formulas




Jahob’s combination method

1) Split verification condition(vc) into conjuncts

vc is an implication, e.g. pre & code - post

Transform implication into conjunction of implications

A>G1&G2 = A->G1, A>G2
A-> (B -=>G) 2> (A&B)=>G
A 2>V Xx.G 2> A2 GXi=Xeqn]

2) Approximinate each conjunct w/ stronger formula
in more tractable logic (recursive walk)

3) Prove each conjunct using a prover
(try all provers in sequence or in parallel)



Range of sound approximations

Worst: a(F) = False (useless)

General idea of our approximations:
a(F) = a1(simplify(F))
aP(Fy A Fy) = aP(Fy) A aP(F,)
aP(F, vV Fy) =aP(F,) Vv aP(F,)

(= F)=—-a™(F)

aP(goodF) = translation of goodF

a'(badF) = False

a’(badF) = True

Q

Best: a(F) =if “F is valid” then True else False (impossible)



Properties of this method

Properties of splitting
— introduces only quadratic blowup
— exploits vc structure: many paths, invariants
— parallelization opportunities
Property of approximation
— unsupported assumptions thrown away
— sound, incomplete
Lemmas about sets enable combination
— user supplied or generated by static analysis



Jahob Verifier Overview

front end,
verification condition generator

(requires loop invariants)

v
comblqatlon | 1sabelle
technique
Translation to Field constraint Reasoning About
first-order logic analysis Collections and Sizes
SMT first-order MONA Presburger Arithmetic
provers provers decision procedure decision procedure

reasoning about expressive formulas




Field Constraint Analysis

Approximation of HOL with WS2S formulas
Automates reasoning about reachability
Effective on formulas of the form:

(tree[f1,f2] &

ALL x. h1(x)=y 2F1(x,y) &

ALL x. h2(x)=y =2F2(x,y)) =2 G(f1,f2,h1,h2)
f1,f2 — backbone h1l,h2 — derived
Such form enforced by class invariants
Soundness and (often) completeness



Jahob Verifier Overview

front end,
verification condition generator

(requires loop invariants)

v
comblqatlon | 1sabelle
technique
Translation to Field constra> Reasoning About
first-order logic analysis Collections and Sizes
SMT first-order MONA Presburger Arithmetic
provers provers decision procedure decision procedure

reasoning about expressive formulas




New Decision Procedures

formula is valid

formula in a 4
decidable logic .
- Decision
Procedure
4 :
Can we build such algorithms? v
- useful implementations formula has a
(used within larger systems) counterexample

- worst-case complexity limitations



Complexity Map of Some Logics

UNDECIDABLE -
First-Order Logic (FOL) Isabelle/HOL \

/ DECIDABLE \
PA(V+)

/ | NEXPTIME
Two-Variable FOL V*-FOL-rel \BAPA(VN\+)
EXPTIME
PSPACE \\ A
NP-Complete \ term
VE-FOL-rel ROWETS
QF FOL (LICS'03)
QF PA(+) QF BA(N,\) term
algebra
SAT(— ,A) ‘ y //

—




Boolean Algebra with Presburger Arithmetic

S:=V | SUS, | S NS, | S;\S,

T:=k | C | T,+T, | T,-T, | C-T| card(S)
A:=5,=S5S,| SCS, | T,=T, | T;<T,
F:=A| F,AF, | F;VF, | -F | JdS.F| dk.F

Essence of decidability: Feferman, Vaught 1959

Our results
— first implementation for BAPA (CADE’05)
— first, exact, complexity for full BAPA (JAR'06)
— polynomial-time fragments of QFBAPA (FOSSACS’07)
— first, exact, complexity for QFBAPA (CADE'07)
— generalize to multisets (VMCAI'08,CAV’'08,CSL’08)



From BAPA to Linear Arithmetic
card(AUB) =p A cardBNC)=q

Deciding BAPA: set vars =» int vars
— generate equisatisfiable PA formula
— exponentially many variables (for each Venn region)

Works for quantified and quantifier free case



Exact Complexity of BAPA (JAR06)

UNDECIDABLE

First-Order Logic (FOL)

\

Isabelle/HOL \

term algebr

/ DECIDABLE

| NEXPTIME
Two-Variable FOL V*-E

PSPACE __ Co®"

VK-FOL \ve
QF FOL

SAT(— ,A)

A
EXPTIME e

((\G
NP-Complete (29
\NG

QF PA(+) QF BA(N,\)

‘1 quantifier

1))/

a.
22" ...

BAPA(VN\+):
elimination

PA(V+):

space 22"0M)

BA(VN\):

space y




Quantifier-Free BAPA

S:=V | SUS, | S;NS, | S;\S,
T:=k|C | T,+T, | T,—-T, | C-T | card(S)
A:=5,=S,| S;CS, | T, =T, | T, <T,
F:=A| F,AF | FpVFE | oF

Why is quantifier-free fragment useful?

BAPA has quantifier elimination
(algorithm: formula = equivalent Q.F. formula)

We can express same relations using quantifier-free formulas
Verification conditions are often quantifier-free

X ¢ contentO A content = contentO U {x} =
cardinality(content) = cardinality(contentO) + 1



Puzzles with Sets and Cardinalities

8 students applied to a PhD program. Each of them speaks
French or English and 3/4 of them speak both French and
English. Among those speaking French, there are twice as
many of those not in top 5% of their master’s studies as those
that do not speak English.

The number of students who speak = E
French but not English is the same

as number of those who speak

English but not French.

s this situation possible? If so, T
how many students speak French, >0
English and are in top 5%? card(FNENT)>0"

card(if)=8 A FUE=U A 4card(FNT)=3card(if) N
2card(F\T) = card(F\E) A card(F\E)=card(E\F)



Exact Complexity of QFBAPA ?

UNDECIDABLE

First-Order Logic (FOL)

\

Isabelle/HOL \

/ DECIDABLE

NEXPTIME
V*—FOL-reI\

QFBAPA(N\+) /\ EXPTIVME

\_/ PSPACE

QF FOL

SAT(—,A)

NP-Complete \
VK-FOL-rel

QF PA(+) QF BA(N,\)

N

1))/

PA(VJr)\

BAPA(VN\+)
BA(VN\)
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Underlying Integer Programming Problem

Integer linear programming problem: for non-negative X;

'\

X1 ¥ Xp ¥ X3+ Xg ¥ Xg + X7=D
> N equations

Xp+ X5 =

C 6 7 q _
——

2" variables

Are there sparse solutions where O(nk) variables are non-zero?
for reals - yes, matrix rank is O(n)
for non-negative reals - yes, theory of LP
for non-negative integers - Eisenbrand, Shmonin’06



Exact Complexity of QFBAPA (CADE'07)

UNDECIDABLE -
First-Order Logic (FOL) Isabelle/HOL \

? DECIDABLE PA(V+)\

NEXPTIME
V*-FOL-reI\ BAPA(VN\+)
EXPTIME
PSPACE \\ ey
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root

next next next

data

mcontent = {|a,b,b,c|}

@ éé @ content
as set
content = {a,b,c}
mcontent
as
@ O ©& o a

Sets and Multisets in Abstraction

U= {0,1}

card(content)=3

Uu-{0,1,.2,..}
card(mcontent)=4

C=CO0w{x} - card(C)=card(CO) +1



Reasoning about Collections and Sizes

work with

Ruzica Piskac, 2" year
PhD student in my group

generalized from sets to multisets
Decision Procedures for Multisets with Cardinality Constraints,
Verification, Model Checking, and Abstract Interpretation, 2008

Linear Arithmetic with Stars, Computer Aided Verification, 2008

Fractional Collections with Cardinality Bounds and
Mixed Integer Linear Arithmetic with Stars,
Computer Science Logic, 2008



Complexity of Quantified Multisets?

NDECIDABLE

\

Isabelle/HOL \

ABLE

v*-FOL- rel\

guantified
multiset

formulas \{é

\ ete
VK-FOL- reI

QF PA(+) QF BA(N,\)

SAT(— ,A)

1))/

PA(VJr)\

BAPA(VN\+)
BA(VN\)
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Complexity of Quantified Multisets

e Addition

X+y=z < da.b. laj=x N |b|=y A
lawb| =z

e Multiplication

X-y=2z < dp. z=|p| N x =|setof(p)| A
(Ym. |m| = z A |setof(m)| = 1A

setof(m) Cp — mnp|=y)

Hilbert's Tenth Problem
Given a polynomial Diophantine equation with integer
coefficient, is there a general algorithm for deciding whether the

equation has a solution in integers.
UNDECIDABLE



Exact Complexity of QFMAPA ?

UNDECIDABLE
First-Order Logic (FOL) quantified multisets+card \

\

/ DECIDABLE

NEXPTIME
V*—FOL-reI\

QFMAPA

N

)\ EXPTIME

\_/ PSPACE
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From Collections to Stars

Check satisfiability of

IX|=1 A Li=Lbx A L] # |L|+[X]

(negation of a verification condition)

Normal form:

(1,k,kq) = 21(x(e),L(e).Ls(e))l e € E} A

Ve. L (e)=L(e)*+x(e) A Kk, # k+1
This is equisatisfiable with

(1,k,kq) € {(x,L,L,)] L{=L+x}* Ak, # k+1
(Such transformation works in general.)



Integer Linear Arithmetic with Star

Decidability: each formula describes
semilinear set, i.e. union of sets of the form
(a} + {by.....b}"
Semilinear sets are closed under *
Computing semilinear sets: NEXPTIME
Using sparseness, and bounds on a,b
- NP (CAV’ 2008)

Application to transition system reachability



Summary of Decision Procedure

Results

UNDECIDABLE Isabelle/HOL \

First-Order Logic (FOL) quant.multisets

/ DECIDABLE

NEXPTIME
V*-FOL-reI\
EXPTIME
PSPACE \\
NP-Complete \
QPRI VK-FOL-rel

QFFOL - 6EMAPA
QF PA(+) QF BA(ﬂ,\)

SAT(—,A) , y

PA(VJr)\

BAPA(VN\+)
BA(VN\)

)




Jahob Verifier Overview

_ front end, ts withi
symbolic verification condition generator | Pro9™ Within
shape analysis (requires loop invariants) programs
e { saere
Translation to Field constraint Reasoning About
first-order logic analysis Collections and Sizes
SMT first-order MONA Presburger Arithmetic
provers provers decision procedure decision procedure




Symbolic Shape Analysis

Automatically infers
quantified loop Invariants for
data structure implementations

Thomas Wies

Freiburg
(now EPFL)

previous

€ N\ —current

Andreas Podelski
Freiburg




Proofs within Programs in Jahob

one approach in Jahob: oroof script
program
.—> difficult vc A‘Isabelle
spec —
alternative approach: N~
program
@ easier v automated
spec P 4 provers
proof
commands

Claim: proof commands fit well within programs



Guarded Commands and wp

Basis for verification condition generation
programs + spec =» guarded commands

Command c: wp(c,G):
assume F F2>G
assert F F&G
Navoc X ALL x. G
1 2

Proof commands corresponding to FOL
(intro and elimin for binders, and,or,not)
Soundness, completeness for FOL



Jahob Verifier

implementation,
specification,
proof hints

SPASS E BT G Z3 MONA
T T T field
FOL SMT-LIB constraint
Coq interface| | interface analysis
Coq |e interface A [
e splitter,
Isabelle |<_ ,Sta f © le—| dispatcher, [—® BAPA
peblcionll o syntactic prover
verification
conditions (VCs)
vcgen
interactively
proven lemmas T
desugar

i

lexer, parser,
resolver




Summary: http://javaverification.org

Jahob: a (data structure) verification system
Verified: lists, trees, hash tables, queues, clients

Proving validity of expressive formulas (HOL subset)
by combining multiple reasoning techniques

Reasoning about collections with cardinality
Proofs within programs

Laboratory for Automated Reasoning
http://lara.epfl.ch

EPFL School of Computer and Communication Sciences
http://ic.epfl.ch
EPFL PhD Program: http://phd.epfl.ch/edic



http://javaverification.org/
http://lara.epfl.ch/
http://ic.epfl.ch/
http://phd.epfl.ch/edic
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