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SAT problem

Definition (SAT problem)

Propositional satisfiability (SAT) problem is the problem of
deciding if there is a truth assignment under which a given
propositional formula (in CNF) evaluates to true. Satisfying truth
assignment is a model of the formula.
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Example

The formula

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

is true in the model {x1,¬x2,¬x3}.

Example

The formula

(¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1) ∧ x1

is not satisfiable.

Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

SAT problem and its applications
Classic DPLL algorithm
Modern DPLL modifications
Verification of SAT solvers

Applications of SAT solving

Many practical problems can be encoded in SAT.

Electronic Design Automation

Software and Hardware Verification

Artificial Intelligence

Planing and Scheduling

Operations Research
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SAT Solving Algorithms

Complete algorithms - for every SAT instance can either find its
model or show that no model exists.

Stohastic algorithms - cannot show that no model exists, but can
find a model of some large SAT instances very
quickly.

We are only interested in complete algorithms.
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Classic DPLL - recursive formulation

function dpll (F : Formula) : (SAT, UNSAT)

begin

if F is empty then BASE

return SAT

else if there is an empty clause in F then

return UNSAT

else there is a unit clause [l ] in F then INFERENCE

return dpll(F [l → >])
else if there is a pure literal l in F then

return dpll(F [l → >])
else begin SEARCH

select a literal l occurring in F
if dpll(F [l → >]) = SAT then

return SAT

else

return dpll(F [l → ⊥])
end

end
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Progress in SAT Solving

Spectacular improvements in the last decade.

Possible to solve formulae with ≈ 10 000 variables and
≈ 1 000 000 clauses

Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

SAT problem and its applications
Classic DPLL algorithm
Modern DPLL modifications
Verification of SAT solvers

Reasons for this success

Conceptual enhancements of the DPLL procedure

backjumping
conflict-driven lemma learning
restarts

Better implementation

non-recursive implementation
smart data-structures
two-watched literals scheme for unit
propagation,

Heuristic components

literal selection strategies
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Motivation

Goal

Have trusted SAT solvers.

Approaches

1 Make SAT solvers produce proofs of their claims and verify
those proofs by independent trusted checkers.

2 Apply formal methods and verify SAT solvers themselves.
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Descriptions of modern SAT solvers

Concrete descriptions - Usually given in a form of programming
language (pseudo)code. Close to real
implementations, but hard to understand and reason
about.

Abstract descriptions - Usually given as state transition systems.
Easy to understand, formalize and reason about, but
hide many important implementation details.
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Approaches for verification

1 Verify only abstract descriptions.

2 Use Hoare-logic style verification for imperative code.

3 Formalize and verify SAT solvers by shallow embedding into
HOL and automatically extract executable code.
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Syntax

Example

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ x3)

Model: {x1,¬x2,¬x3}

Isabelle types

types Variable = nat
datatype Literal = Pos Variable

| Neg Variable
types Clause = "Literal list"
types Formula = "Clause list"

types Valuation = "Literal list"
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Semantics

Definition

v � l if and only if l ∈ v
literalTrue :: "Literal => Valuation => bool"
v �¬ l if and only if l ∈ v
literalFalse :: "Literal => Valuation => bool"
v � c if and only if ∃l . l ∈ c ∧ v � l
clauseTrue :: "Clause => Valuation => bool"
v �¬ c if and only if ∀l . l ∈ c → v �¬ l
clauseFalse :: "Clause => Valuation => bool"
v � F if and only if ∀c . c ∈ F → v � c
formulaTrue :: "Formula => Valuation => bool"
v �¬F if and only if ∃c . c ∈ F ∧ v �¬ c
formulaFalse :: "Formula => Valuation => bool"
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Semantics (cont.)

Definition

(consistent v) if and only if (¬∃l . v � l ∧ v � l)
consistent :: "Valuation => bool"
(model v F ) if and only if (consistent v ∧ v � F )
model :: "Valuation => Formula => bool"
(sat F ) if and only if (∃v . model v F )
satisfiable :: "Formula => bool"
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Assertion trails

When building a non-recursive implementation the notion of
valuation is extended.

Definition (Assertion trail)

Assertion trail is a list of literals, some of which are marked as
decision literals. Decision literals split the trail into levels.

Example

A trail M could be [+1, |−2, +6, |+5,−3, +4, |−7].
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Formal system of Krstić and Goel [KG07]

Decide:
l ∈ L l, l /∈ M

M := M |l
UnitPropagate:

l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l, l /∈ M
M := M l

Conflict:
C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M

C := {l1, . . . , lk}
Explain:

l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l
C := C ∪ {l1, . . . , lk} \ {l}

Learn:
C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}
Backjump:

C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li
C := no cflct M := M [m] l

Forget:
C = no cflct c ∈ F F \ c � c

F := F \ c
Restart:

C = no cflct

M := M [0]

Solver state - (F , M, C)

F - formula

M - valuation (trail)

C - conflict analysis clause

Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

Formal system of Krstić and Goel
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DPLL search - a simplified system

Decide:
l ∈ F l , l /∈ M

M := M | l
UnitPropagate:

l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l , l /∈ M

M := M l
Backtrack:

M �¬F M = M ′ | l M ′′ decisions M ′′ = [ ]

M := M ′ l

Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

Formal system of Krstić and Goel
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Example of a simple system
Formalization of state transition systems

DPLL search - a simplified system

Decide:
l ∈ F l , l /∈ M

M := M | l
UnitPropagate:

l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l , l /∈ M

M := M l
Backtrack:

M �¬F M = M ′ | l M ′′ decisions M ′′ = [ ]

M := M ′ l
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Example

F = [[−1, +2], [−1,−3], [−2, +4, +5], [+3,−4,−5], [−4, +5]]

Function applied sat? M

UNDEF [ ]
Decide (l = +1) UNDEF [|+1]
UnitProp (c = [−1, +2], l = +2) UNDEF [|+1, +2]
UnitProp (c = [−1,−3], l = −3) UNDEF [|+1, +2,−3]
Decide (l = +4) UNDEF [|+1, +2,−3, |+4]
UnitProp (c = [−4, +5], l = +5) UNDEF [|+1, +2,−3, |+4, +5]
Backtrack (M �¬ [+3,−4,−5]) UNDEF [|+1, +2,−3,−4]
UnitProp (c = [−2, +4, +5], l = +5) UNDEF [|+1, +2,−3,−4, +5]
M 2¬F, (vars M) = (vars F ) SAT [|+1, +2,−3,−4, +5]
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Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

Formal system of Krstić and Goel
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Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

Formal system of Krstić and Goel
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UnitProp (c = [−1, +2], l = +2) UNDEF [|+1, +2]
UnitProp (c = [−1,−3], l = −3) UNDEF [|+1, +2,−3]
Decide (l = +4) UNDEF [|+1, +2,−3, |+4]
UnitProp (c = [−4, +5], l = +5) UNDEF [|+1, +2,−3, |+4, +5]
Backtrack (M �¬ [+3,−4,−5]) UNDEF [|+1, +2,−3,−4]
UnitProp (c = [−2, +4, +5], l = +5) UNDEF [|+1, +2,−3,−4, +5]
M 2¬F, (vars M) = (vars F ) SAT [|+1, +2,−3,−4, +5]
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Transition relation - formal definition

Definition (State)

State (M, F ) is an ordered pair of an assertion trail M and formula F .

Definition

decide (M1, F1) (M2, F2) ⇐⇒

∃l . var l ∈ vars F1 ∧ l /∈ M1 ∧ l /∈ M1 ∧
M2 = M1 @ l> ∧ F2 = F1

backtrack (M1, F1) (M2, F2) ⇐⇒

M1 �¬F1 ∧ decisions M1 6= [ ] ∧

M2 = prefixBeforeLastDecision M1 @ lastDecision M1
⊥ ∧

F2 = F1
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Transition relation - formal definition

Definition

(M1, F1)→ (M2, F2) ⇐⇒ decide (M1, F1) (M2, F2) ∨
backtrack (M1, F1) (M2, F2) ∨
unitPropagate (M1, F1) (M2, F2)

The relation →∗ is the transitive and reflexive closure of the →
relation.
The state (M, F ) is a final state if it is minimal wrt. the relation
→, i.e., if there is no state (M ′, F ′) st. (M, F )→ (M ′, F ′).
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Theorem (Soundness)

Let ([ ], F0)→∗ (M, F ).

If
1 no conflict (i.e., M 2¬F ),
2 the rule Decide is not applicable

(i.e., var l ∈ vars F0, l /∈ M and l /∈ M)

then F0 is satisfiable and M is its model
(i.e., sat F0 and model M F0).

If
1 conflict (i.e., M �¬F ),
2 the rule Backtrack is not applicable

(i.e., (decisions M) = [ ]),

then F0 is unsatisfiable (i.e., ¬sat F0).
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Theorem (Pre-Completeness)

In every finite state (M, F ) one of the following holds:

1 the rule Backtrack is not applicable
(i.e., M �¬F and decisions M = [ ])

2 the rule Decide is not applicable
(i.e., M 2¬F and var l ∈ vars F0, l /∈ M and l /∈ M)
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Theorem (Termination)

Relation → is well-founded, i.e., there is no infinite descending
chain

([ ], F0)→ (M1, F1)→ (M2, F2)→ . . .
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How are these theorems proved?

Invariants

Invariantconsistent : consistent M
Invariantdistinct : distinct M
InvariantvarsM : vars M ⊆ vars F
InvariantimpliedLiterals : ∀l . l ∈ M =⇒ (F @ decisionsTo l M) � l

Theorem

If ([ ], F0)→∗ (M, F ), then all invariants hold in the state (M, F ).
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Example of a simple system
Formalization of state transition systems

How are these theorems proved?

The termination is proved using well-founded orderings.

Definition

l1 ≺lit l2 ⇐⇒ (isDecision l1) ∧ ¬(isDecision l2)

Definition

M1 �M M2 ⇐⇒ M1 ≺lit
lex M2,

where ≺lit
lex is a lexicographic extension of relation ≺lit .

Definition

M1 �r
M M2 ⇐⇒ (consistent M1) ∧ (distinct M1) ∧ (vars M1) ⊆ Vbl

(consistent M2) ∧ (distinct M2) ∧ (vars M2) ⊆ Vbl

M1 �M M2
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Shallow embedding into HOL - characteristics

Program is expressed as a set of recursive HOL functions.

Proof methods are just standard induction principles and
equational reasoning.

No specialized program logic (e.g., Hoare logic) is necessary.

Executable code can be automatically generated.

Side-effects are impossible.
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Embedding of a SAT solver

Embedding of the classic DPLL was an easy to do excercise
[MJ09].

Embedding of a modern SAT solver was a big challenge
[Mar09].

Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

Code samples
Verification

Embedding of a SAT solver

Embedding of the classic DPLL was an easy to do excercise
[MJ09].

Embedding of a modern SAT solver was a big challenge
[Mar09].
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Embedding of a modern MiniSat-like SAT solver

Positive:

Implementation follows state transition systems.

All algorithms described by state stransition systems are
implemented.

Also, major low-level implementation techniques are
implemented.

Negative:

There are no in-place modifications of data.

Global variables are gruped to form a solver state which is
explicitly passed around function calls.
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Solver state

record State =
"getM" :: LiteralTrail

"getF" :: Formula

"getSATFlag" :: ExtendedBool

"getConflictFlag" :: bool

"getConflictClause" :: pClause

"getQ" :: "Literal list"

"getReason" :: "Literal ⇒ pClause option"

"getWatch1" :: "pClause ⇒ Literal option"

"getWatch2" :: "pClause ⇒ Literal option"

"getWatchList" :: "Literal ⇒ pClause list"

"getC" :: Clause

"getCl" :: Literal

"getCll" :: Literal
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applyDecide – implements Decide rule

definition applyDecide :: "State ⇒ Variable set ⇒ State"

where
"applyDecide state decisionVars =

assertLiteral (selectLiteral state decisionVars) True state

"
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The main solver function
definition solve :: "Formula ⇒ ExtendedBool"

where
"solve F0 = getSATFlag (solve loop (initialize F0 initialState) (vars F0))"

definition solve loop body :: "State ⇒ Variable set ⇒ State"

where
"solve loop body state decisionVars =

(let state up = exhaustiveUnitPropagate state in

(if (getConflictFlag state up) then

(if (currentLevel (getM state up)) = 0 then

state upL getSATFlag := False M
else

let state c = applyConflict state up in

let state e = applyExplainUIP state c in

let state l = applyLearn state e in

let state b = applyBackjump state l in

state b

)

else

(if (vars (elements (getM state up)) ⊇ decisionVars) then

state upL getSATFlag := TRUE M
else

applyDecide state up decisionVars

)

))

"
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solve loop – a total recursive function

function (domintros, tailrec) solve loop ::

"State ⇒ Variable set ⇒ State"

where
"solve loop state decisionVars =

(if (getSATFlag state) 6= UNDEF then

state

else

let state’ = solve loop body state decisionVars in

solve loop state’ decisionVars

)

"

by pat completeness auto
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Two-watch literal scheme – the most complex function
primrec
notifyWatches loop :: "Literal ⇒ pClause list ⇒ pClause list ⇒ State ⇒ State"

where
"notifyWatches loop literal [] newWl state =

stateL getWatchList := (getWatchList state)(literal := newWl) M" |

"notifyWatches loop literal (clause # list’) newWl state =

(let state’ = (if Some literal = (getWatch1 state clause) then (swapWatches clause state)

else state) in

case (getWatch1 state’ clause) of Some w1 ⇒ (

case (getWatch2 state’ clause) of Some w2 ⇒ (

(if (literalTrue w1 (elements (getM state’))) then

notifyWatches loop literal list’ (newWl @ [clause]) state’

else

(case (getNonWatchedUnfalsifiedLiteral ((getF state’) ! clause) w1 w2 (getM state’)) of

Some l’ ⇒
notifyWatches loop literal list’ newWl (setWatch2 clause l’ state’) |

None ⇒
(if (literalFalse w1 (elements (getM state’))) then

let state’’ = state’L getConflictFlag := True, getConflictClause := clause M in

notifyWatches loop literal list’ (newWl @ [clause]) state’’

else

let state’’ =

state’L getQ := (if w1 el (getQ state’) then (getQ state’) else (getQ state’) @ [w1])M in

let state’’’ = (setReason w1 clause state’’) in

notifyWatches loop literal list’ (newWl @ [clause]) state’’’))))))"
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Total correctness

Theorem

solve F0 = SAT ⇐⇒ sat F0
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How is it proved?

Correctness proofs for state transition systems were reused.

New invariants (24 totally) were introduced.

A complex invariant

∀c . c < |F | =⇒ M �¬ (watch1 c) =⇒
(∃l . l ∈ c ∧ M � l ∧ level l ≤ level (watch1 c)) ∨
(∀l . l ∈ c ∧ l 6= (watch1 c) ∧ l 6= (watch2 c) =⇒

M �¬ l ∧ level l ≤ level (watch1 c)).

Partial termination of recursive functions was proved, using
the same orderings as for state transition systems.
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Some numbers

Around 1 man-year effort.

≈ 25 000 lines of Isar code.

Generated PDF-s ≈ 700 pages.
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Further work

Extract executable code from specifications.

Use monadic programming to get imperative features

Non-monadic programming
definition setWatch1 :: "pClause ⇒ Literal ⇒ State ⇒ State"

where
"setWatch1 clause literal state =

let state’ = stateL getWatch1 := (getWatch1 state)(clause := Some literal) M in

addToWatchList literal clause state’ "

Monadic programming
definition setWatch1 :: "nat ⇒ Literal ⇒ unit StateTransformer"

where
"setWatch1 clause literal =

do

updateWatch1 clause (Some literal);

addToWatchList literal clause

done"

Filip Marić Formalization of SAT Solvers



Introduction
Formalization of CNF propositional logic

State Transition Systems
Shallow embedding into HOL

Code samples
Verification

Further work

Extract executable code from specifications.

Use monadic programming to get imperative features

Non-monadic programming
definition setWatch1 :: "pClause ⇒ Literal ⇒ State ⇒ State"

where
"setWatch1 clause literal state =

let state’ = stateL getWatch1 := (getWatch1 state)(clause := Some literal) M in

addToWatchList literal clause state’ "

Monadic programming
definition setWatch1 :: "nat ⇒ Literal ⇒ unit StateTransformer"

where
"setWatch1 clause literal =

do

updateWatch1 clause (Some literal);

addToWatchList literal clause

done"
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