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What this talk is about:

Logical foundations of programming languages;

Interactive approach to logic: proofs as dialogical
argumentations, game-theoretic approach to proofs;

The central role the cut rule plays in the dynamics of proofs;

Relating the functional programming approach and the logic

programming approach;

A new setting to specify computation-as-proof-search.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search



Outline

Outline of the presentation

Sequent calculus, proof theory and computation;

Background on linear logic;

Interactive proof search in MALLz;

Abtracting away from sequent proofs: from MALLz to Ludics;

A uniform framework for computation-as-proof-search.
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Proof Theory, Sequent Calculus and
Computation
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Sequent Calculus and the Cut Rule: Lemmas

Most often, to prove theorem T : Indirect arguments

1 First �nd an appropriate lemma L;
2 Establish that L holds;
3 Prove that L entails T ;
4 Finally deduce that T holds.

Here lies the mathematical idea: to �nd the appropriate lemma, the
one that makes the proof simple...

This is re�ected in sequent proofs thanks to the cut rule:

Π1

` L
Π2

L ` T
` T cut

Natural questions: Is it possible never to use lemmas?
To consider only direct proofs?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search



Sequent Calculus and the Cut Rule: Gentzen's Hauptsatz

Is it possible never to use lemmas? To consider only direct proofs?
Yes [Gentzen]:

Cut-admissibility: LK (resp. LJ) proves the same theorems
with or without the cut rule;

Cut-elimination: given an LK (resp. LJ) proof, there is a
systematic and mechanical procedure to transform it into a
proof which does not use the cut rule (cut-free proof).

=⇒ The key to the connection between proof theory and
computation.
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Proof Theory and Computation

Proof theory and computation are strongly related.

Mainly in two ways, two dynamical approaches to proofs:

Cut-elimination: the dynamics lies in the process of
transforming a proof with cuts into a cut-free proof;

Proof-search: the dynamics lies in the search for a cut-free
proof.

Both approaches rely on Gentzen's Hauptsatz.

Related with 2 styles of programming languages:

Functional programming (see Silvia's talk);

Logic programming (next slide)
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Proof Theory and Logic Programming.

Examples of languages: Prolog, λ-Prolog, GNU-Prolog, Forum, ...

The program is encoded as a sequent, typically P ` G ;
Dynamics of computation: search for a cut-free proof;
The operational meaning of this search lies in constraints
that are imposed to the search strategy, for instance a
goal-directed search. Example:

P,A ` G

P ` A⇒ G
load/⇒

Logic Programming ←→ Proof Search
Program ←→ Sequent

Program Clause ←→ Formula
Computation ←→ Search for a Proof

Results ←→ Cut-free Proofs
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Cut Rule Plays a Crucial Role

Proof-Search: the dynamics of the computation comes from
the search for a cut-free proof;

Cut-Elimination: the dynamics of the computation lies in the
normalization of a proof into a cut-free proof;

Cut-admissibility vs. Cut-elimination (two aspects of the same

result);

In both cases, results of computations are cut-free proofs;

Complexity lies in the choice of the cut-formula;

Though, it is di�cult to relate functional programming and
logic programming in a logically satisfying way.
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Control and Logic

Proof theory provides a satisfying foundation for functional and
logic programming languages...

... which is much less satisfying as soon as control is concerned:

(FP) Extending Curry-Howard from intuitionnistic to classical
logic took a long time (Howard 69 −→ Gri�n 90, Parigot 91)

(LP) Backtracking and pruning operators are not satisfyingly
treated from a proof-theoretical point of view in the
computation-as-proof-search framework.

Algorithm = Logic + Control

Is it possible to capture Control with logical methods?

Understand the Logic of Control
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Background on Linear Logic
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Linear Logic

Linear Logic [Girard, 1987]:

is the result of a careful analysis of structural rules in sequent

calculus;

has more connectives than LK (2 conjunctions, 2 disjunctions

plus modalities), but the new inference rules are actually

derived in a simple way from the usual rules for LK;

is built on strong duality principles ⇒ one-sided sequents.

LL formulas:

F ::= a | F ⊗ F | F ⊕ F | 1 | 0 | ∃x .F | !F positive
a⊥ | F O F | F N F | ⊥ | > | ∀x .F | ?F negative

positive/negative duality
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Two Conjunctions

In LK, the following inference rules are provably equivalent:

` Γ,A ` ∆,B

` Γ,∆,A ∧ B
∧m ` Γ,A ` Γ,B

` Γ,A ∧ B
∧a

But not in LL because of the restriction on the structural rules.
This leads to:

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,A ` Γ,B

` Γ,A N B
N
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LL Sequent Calculus

` a, a⊥
ini

` Γ,A ` ∆,A⊥

` Γ,∆
cut

` 1
1
` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,A1

` Γ,A1 ⊕ A2

⊕1

` Γ,A2

` Γ,A1 ⊕ A2

⊕2

` Γ,> >
` Γ
` Γ,⊥ ⊥

` Γ,A,B

` Γ,A O B
O ` Γ,A ` Γ,B

` Γ,A N B
N

` Γ,A[t/x ]

` Γ,∃x .A ∃ ` Γ,A[c/x ]

` Γ, ∀x .A ∀ provided c is new

` ? Γ,B

` ? Γ, !B
!

` Γ,B

` Γ, ?B
? d

` Γ
` Γ, ?B

?w
` Γ, ?B, ?B

` Γ, ?B
? c

positive/negative duality
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Proof Search by Cut-Elimination:
Interactive Proof Seach
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Motivation: A More Uniform Approach to Proof Search

Proof search is speci�ed using non-uniform components:

a language of formulas and a set of inferences (LK, LJ, LL, ...);

a grammar for program clauses and goals;

a search strategy (uniform proofs) + pruning heuristics (cut).

The mismatch may be more fundamental: We actually work
with un�nished/uncompleted proofs which are not objects of
the theory of sequent calculus. For instance, pruning operators
prune the �search space� .

For instance:

How to use a failed search for future computations?

How to use the past computations in order to improve the
next computations?
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Games and Logic Programming

A very natural approach, back to 1986 (Van Emden, 1986);

Yet, much less investigated than the game-semantical
approaches to functional programming;

Ludics [Girard, 2001] gives a status to partial proofs:
There are partial proofs;

There are both proofs and counter-proofs: the designs;

Ludics theory is interactive;

A good candidate for an interactive approach to logic

programming?

Some ludics keywords: monism, focalization, locations, tests

through normalization, behaviours, ...
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Interactive Proof-Search, in Principle

Test Environment I Interactive Search Space

N

E1 T

E2 E

↖↗

R

↑ ↑

E3 A

↖↑↗

C

D

E4 E5 T

I

E6 O

N

Duality test environment/interactive search space.
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Interactive Proof-Search, in Principle

Test Environment I Interactive Search Space

N

E1 T

E2 E ↖↗
R ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6 O

N

Duality test environment/interactive search space.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search



MALL

z and IPS in MALLz

F ::= F ⊗ F | F ⊕ F | 1 | 0 (positive fomulas)

F O F | F N F | ⊥ | > (negative fomulas)

` Γ,A ` ∆,A⊥

` Γ,∆
cut

` Γ
z

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,Ai

` Γ,A0 ⊕ A1

⊕i
i ∈ {0, 1} ` 1

1

` Γ,A ` Γ,B

` Γ,A N B
N ` Γ,A,B

` Γ,A O B
O ` Γ,> >

` Γ
` Γ,⊥ ⊥

In z, Γ contains no negative formula.

MALLz formulas will be given adresses to distinguish occurrences:

10 N〈〉 (⊥10 ⊕1 ⊥11)
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MALLz and IPS in MALLz

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

Used to build, by interaction:

Di

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
D

` ⊥0 ⊕〈〉 (110 N1 111)

` cut

↓cut−elim
` z
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MALLz and IPS in MALLz

Interacting with

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

can lead to

or to

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

D′ =

` z
` ⊥0

⊥
` ⊥0 ⊕〈〉 (110 N1 111)

⊕0

But D′ uses a z: it is a failure.
How to avoid this second interaction for D′?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search



MALLz and IPS in MALLz

Interacting with

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

can lead to or to

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

D′ =

` z
` ⊥0

⊥
` ⊥0 ⊕〈〉 (110 N1 111)

⊕0

But D′ uses a z: it is a failure.
How to avoid this second interaction for D′?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search



MALLz and IPS in MALLz

Ludics contains appropriate ingredients to represent MALLz proofs.

One could add new tests to the environment:

D2 =

` ⊥10 ⊕1 ⊥11

z

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N|1

Adding D2 would have forbidden the search that leads to a failure
by forcing the selection of ⊕1.

This can be summarized in (〈〉, 1)−:

Slice of the N rule.

z
(〈〉, 1)−
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From MALLz to Designs

Ludics contains appropriate ingredients to represent MALLz proofs.

One could add new tests to the environment:

D2 =

` ⊥10 ⊕1 ⊥11

z

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N|1

The partial inference rule N|1 is a negative rule with active
formula indexed by 〈〉 producing one subformula located in 1.

This can be summarized in (〈〉, 1)−:

Slice of the N rule.

z
(〈〉, 1)−
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From MALLz to Designs.

Di =
⊢ 10

1

⊢ z
⊢ ⊥1i

⊥
⊢ ⊥10 ⊕1 ⊥11

⊕i

⊢ 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

, i ∈ {0, 1} −→ 〈〉,{0}

0 ∅

〈〉,{1}

1 {i}

1i,{∅}

z

1

D =

⊢ 110
1 ⊢ 111

1

⊢ 110 N1 111
N

⊢ ⊥0 ⊕〈〉 (110 N1 111)
⊕1 −→ 〈〉 {1}

1,{0}

10 ∅

1,{1}

11 ∅

1

Those designs can interact. But why to go through MALLz and
not directly interact(ively search) in Ludics?
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Scheme of IPS on an Example.

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

z

1

D0 = ∅ D1 = κ+
1

D2 = κ+
1

κ−2
D3 = κ+

1

κ−2

κ+
3

D4 = κ+
1

κ−2

κ+
3

κ−4
D5 = κ+

1

κ−2

κ+
3

κ−4

κ+
5

1

This interactive search mechanism is de�ned thanks to

an abstract machine, the SLAM.
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Backtracking, Interactively

Test Environment Interactive Search Space

I

N

E1 T

E2 E ↖↗
R ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6

Backtrack(D)

O

N

Using the interaction paths for D
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Backtracking, Interactively

Test Environment Interactive Search Space

I

N

E1 T

E2 E ↖↗
R 6 ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6 Backtrack(D) O

N

Using the interaction paths for D
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Towards Interactive Control.

Next step:
Consider other usual pruning mechanisms in Prolog and and see
how "interactive" they can be made:

!/0

soft cut

other backtracking modi�ers

intelligent backtracking

...
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Conclusions

Relate cut-elimination and proof search;

An interactive framework for proof search;

Enriching the search environment by adding more tests as
computation goes on;

Syntax/Semantics: due to the �monistic� approach of Ludics,
we get an abstract evaluation framework (SLAM) and we
bene�t from ludics semantical tools (behaviours, internal
completeness);

Much to make it more expressive: control/pruning operators,
�rst order, exponentials, ...
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