
An Interactive Foundation for

Computation as Proof-Search

Alexis Saurin
Lambda, Università degli Studi di Torino (currently)

Parsifal, INRIA Saclay & École Polytechnique (until recently)

30th january 2009

Second Workshop on Formal and
Automated Theorem Proving and Applications,

University of Belgrade

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

What this talk is about:

Logical foundations of programming languages;

Interactive approach to logic: proofs as dialogical
argumentations, game-theoretic approach to proofs;

The central role the cut rule plays in the dynamics of proofs;

Relating the functional programming approach and the logic

programming approach;

A new setting to specify computation-as-proof-search.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Outline

Outline of the presentation

Sequent calculus, proof theory and computation;

Background on linear logic;

Interactive proof search in MALLz;

Abtracting away from sequent proofs: from MALLz to Ludics;

A uniform framework for computation-as-proof-search.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Proof Theory, Sequent Calculus and
Computation

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Sequent Calculus and the Cut Rule: Lemmas

Most often, to prove theorem T : Indirect arguments

1 First �nd an appropriate lemma L;
2 Establish that L holds;
3 Prove that L entails T ;
4 Finally deduce that T holds.

Here lies the mathematical idea: to �nd the appropriate lemma, the
one that makes the proof simple...

This is re�ected in sequent proofs thanks to the cut rule:

Π1

` L
Π2

L ` T
` T cut

Natural questions: Is it possible never to use lemmas?
To consider only direct proofs?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Sequent Calculus and the Cut Rule: Gentzen's Hauptsatz

Is it possible never to use lemmas? To consider only direct proofs?
Yes [Gentzen]:

Cut-admissibility: LK (resp. LJ) proves the same theorems
with or without the cut rule;

Cut-elimination: given an LK (resp. LJ) proof, there is a
systematic and mechanical procedure to transform it into a
proof which does not use the cut rule (cut-free proof).

=⇒ The key to the connection between proof theory and
computation.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Proof Theory and Computation

Proof theory and computation are strongly related.

Mainly in two ways, two dynamical approaches to proofs:

Cut-elimination: the dynamics lies in the process of
transforming a proof with cuts into a cut-free proof;

Proof-search: the dynamics lies in the search for a cut-free
proof.

Both approaches rely on Gentzen's Hauptsatz.

Related with 2 styles of programming languages:

Functional programming (see Silvia's talk);

Logic programming (next slide)

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Proof Theory and Logic Programming.

Examples of languages: Prolog, λ-Prolog, GNU-Prolog, Forum, ...

The program is encoded as a sequent, typically P ` G ;
Dynamics of computation: search for a cut-free proof;
The operational meaning of this search lies in constraints
that are imposed to the search strategy, for instance a
goal-directed search. Example:

P,A ` G

P ` A⇒ G
load/⇒

Logic Programming ←→ Proof Search
Program ←→ Sequent

Program Clause ←→ Formula
Computation ←→ Search for a Proof

Results ←→ Cut-free Proofs

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Cut Rule Plays a Crucial Role

Proof-Search: the dynamics of the computation comes from
the search for a cut-free proof;

Cut-Elimination: the dynamics of the computation lies in the
normalization of a proof into a cut-free proof;

Cut-admissibility vs. Cut-elimination (two aspects of the same

result);

In both cases, results of computations are cut-free proofs;

Complexity lies in the choice of the cut-formula;

Though, it is di�cult to relate functional programming and
logic programming in a logically satisfying way.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Control and Logic

Proof theory provides a satisfying foundation for functional and
logic programming languages...

... which is much less satisfying as soon as control is concerned:

(FP) Extending Curry-Howard from intuitionnistic to classical
logic took a long time (Howard 69 −→ Gri�n 90, Parigot 91)

(LP) Backtracking and pruning operators are not satisfyingly
treated from a proof-theoretical point of view in the
computation-as-proof-search framework.

Algorithm = Logic + Control

Is it possible to capture Control with logical methods?

Understand the Logic of Control

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Background on Linear Logic

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Linear Logic

Linear Logic [Girard, 1987]:

is the result of a careful analysis of structural rules in sequent

calculus;

has more connectives than LK (2 conjunctions, 2 disjunctions

plus modalities), but the new inference rules are actually

derived in a simple way from the usual rules for LK;

is built on strong duality principles ⇒ one-sided sequents.

LL formulas:

F ::= a | F ⊗ F | F ⊕ F | 1 | 0 | ∃x .F | !F positive
a⊥ | F O F | F N F | ⊥ | > | ∀x .F | ?F negative

positive/negative duality

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Two Conjunctions

In LK, the following inference rules are provably equivalent:

` Γ,A ` ∆,B

` Γ,∆,A ∧ B
∧m ` Γ,A ` Γ,B

` Γ,A ∧ B
∧a

But not in LL because of the restriction on the structural rules.
This leads to:

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,A ` Γ,B

` Γ,A N B
N

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

LL Sequent Calculus

` a, a⊥
ini

` Γ,A ` ∆,A⊥

` Γ,∆
cut

` 1
1
` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,A1

` Γ,A1 ⊕ A2

⊕1

` Γ,A2

` Γ,A1 ⊕ A2

⊕2

` Γ,> >
` Γ
` Γ,⊥ ⊥

` Γ,A,B

` Γ,A O B
O ` Γ,A ` Γ,B

` Γ,A N B
N

` Γ,A[t/x]

` Γ,∃x .A ∃ ` Γ,A[c/x]

` Γ, ∀x .A ∀ provided c is new

` ? Γ,B

` ? Γ, !B
!

` Γ,B

` Γ, ?B
? d

` Γ
` Γ, ?B

?w
` Γ, ?B, ?B

` Γ, ?B
? c

positive/negative duality

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Proof Search by Cut-Elimination:
Interactive Proof Seach

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Motivation: A More Uniform Approach to Proof Search

Proof search is speci�ed using non-uniform components:

a language of formulas and a set of inferences (LK, LJ, LL, ...);

a grammar for program clauses and goals;

a search strategy (uniform proofs) + pruning heuristics (cut).

The mismatch may be more fundamental: We actually work
with un�nished/uncompleted proofs which are not objects of
the theory of sequent calculus. For instance, pruning operators
prune the �search space� .

For instance:

How to use a failed search for future computations?

How to use the past computations in order to improve the
next computations?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Games and Logic Programming

A very natural approach, back to 1986 (Van Emden, 1986);

Yet, much less investigated than the game-semantical
approaches to functional programming;

Ludics [Girard, 2001] gives a status to partial proofs:
There are partial proofs;

There are both proofs and counter-proofs: the designs;

Ludics theory is interactive;

A good candidate for an interactive approach to logic

programming?

Some ludics keywords: monism, focalization, locations, tests

through normalization, behaviours, ...

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Interactive Proof-Search, in Principle

Test Environment I Interactive Search Space

N

E1 T

E2 E

↖↗

R

↑ ↑

E3 A

↖↑↗

C

D

E4 E5 T

I

E6 O

N

Duality test environment/interactive search space.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Interactive Proof-Search, in Principle

Test Environment I Interactive Search Space

N

E1 T

E2 E ↖↗
R ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6 O

N

Duality test environment/interactive search space.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALL

z and IPS in MALLz

F ::= F ⊗ F | F ⊕ F | 1 | 0 (positive fomulas)

F O F | F N F | ⊥ | > (negative fomulas)

` Γ,A ` ∆,A⊥

` Γ,∆
cut

` Γ
z

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,Ai

` Γ,A0 ⊕ A1

⊕i
i ∈ {0, 1} ` 1

1

` Γ,A ` Γ,B

` Γ,A N B
N ` Γ,A,B

` Γ,A O B
O ` Γ,> >

` Γ
` Γ,⊥ ⊥

In z, Γ contains no negative formula.

MALLz formulas will be given adresses to distinguish occurrences:

10 N〈〉 (⊥10 ⊕1 ⊥11)

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALLz and IPS in MALLz

F ::= F ⊗ F | F ⊕ F | 1 | 0 (positive fomulas)

F O F | F N F | ⊥ | > (negative fomulas)

` Γ,A ` ∆,A⊥

` Γ,∆
cut ` Γ

z

` Γ,A ` ∆,B

` Γ,∆,A ⊗ B
⊗ ` Γ,Ai

` Γ,A0 ⊕ A1

⊕i
i ∈ {0, 1} ` 1

1

` Γ,A ` Γ,B

` Γ,A N B
N ` Γ,A,B

` Γ,A O B
O ` Γ,> >

` Γ
` Γ,⊥ ⊥

In z, Γ contains no negative formula.

MALLz formulas will be given adresses to distinguish occurrences:

10 N〈〉 (⊥10 ⊕1 ⊥11)

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALLz and IPS in MALLz

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

Used to build, by interaction:

Di

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
D

` ⊥0 ⊕〈〉 (110 N1 111)

` cut

↓cut−elim
` z

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALLz and IPS in MALLz

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

Used to build, by interaction:

Di

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
D

` ⊥0 ⊕〈〉 (110 N1 111)

` cut

↓cut−elim
` z

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALLz and IPS in MALLz

Interacting with

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

can lead to

or to

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

D′ =

` z
` ⊥0

⊥
` ⊥0 ⊕〈〉 (110 N1 111)

⊕0

But D′ uses a z: it is a failure.
How to avoid this second interaction for D′?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALLz and IPS in MALLz

Interacting with

Di =

` 10
1

` z
` ⊥1i

⊥
` ⊥10 ⊕1 ⊥11

⊕i

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N
, i ∈ {0, 1}

can lead to or to

D =

` 110
1 ` 111

1

` 110 N1 111
N

` ⊥0 ⊕〈〉 (110 N1 111)
⊕1

D′ =

` z
` ⊥0

⊥
` ⊥0 ⊕〈〉 (110 N1 111)

⊕0

But D′ uses a z: it is a failure.
How to avoid this second interaction for D′?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

MALLz and IPS in MALLz

Ludics contains appropriate ingredients to represent MALLz proofs.

One could add new tests to the environment:

D2 =

` ⊥10 ⊕1 ⊥11

z

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N|1

Adding D2 would have forbidden the search that leads to a failure
by forcing the selection of ⊕1.

This can be summarized in (〈〉, 1)−:

Slice of the N rule.

z
(〈〉, 1)−

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

From MALLz to Designs

Ludics contains appropriate ingredients to represent MALLz proofs.

One could add new tests to the environment:

D2 =

` ⊥10 ⊕1 ⊥11

z

` 10 N〈〉 (⊥10 ⊕1 ⊥11)
N|1

The partial inference rule N|1 is a negative rule with active
formula indexed by 〈〉 producing one subformula located in 1.

This can be summarized in (〈〉, 1)−:

Slice of the N rule.

z
(〈〉, 1)−

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

From MALLz to Designs.

Di =
⊢ 10

1

⊢ z
⊢ ⊥1i

⊥
⊢ ⊥10 ⊕1 ⊥11

⊕i

⊢ 10 N〈〉 (⊥10 ⊕1 ⊥11)
N

, i ∈ {0, 1} −→ 〈〉,{0}

0 ∅

〈〉,{1}

1 {i}

1i,{∅}

z

1

D =

⊢ 110
1 ⊢ 111

1

⊢ 110 N1 111
N

⊢ ⊥0 ⊕〈〉 (110 N1 111)
⊕1 −→ 〈〉 {1}

1,{0}

10 ∅

1,{1}

11 ∅

1

Those designs can interact. But why to go through MALLz and
not directly interact(ively search) in Ludics?

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Scheme of IPS on an Example.

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

z

1

D0 = ∅ D1 = κ+
1

D2 = κ+
1

κ−2
D3 = κ+

1

κ−2

κ+
3

D4 = κ+
1

κ−2

κ+
3

κ−4
D5 = κ+

1

κ−2

κ+
3

κ−4

κ+
5

1

This interactive search mechanism is de�ned thanks to

an abstract machine, the SLAM.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Scheme of IPS on an Example.

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

z

1

D0 = ∅ D1 = κ+
1

D2 = κ+
1

κ−2
D3 = κ+

1

κ−2

κ+
3

D4 = κ+
1

κ−2

κ+
3

κ−4
D5 = κ+

1

κ−2

κ+
3

κ−4

κ+
5

1

This interactive search mechanism is de�ned thanks to

an abstract machine, the SLAM.

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Backtracking, Interactively

Test Environment Interactive Search Space

I

N

E1 T

E2 E ↖↗
R ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6

Backtrack(D)

O

N

Using the interaction paths for D

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Backtracking, Interactively

Test Environment Interactive Search Space

I

N

E1 T

E2 E ↖↗
R 6 ↑ ↑

E3 A ↖↑↗
C D

E4 E5 T

I

E6 Backtrack(D) O

N

Using the interaction paths for D

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Towards Interactive Control.

Next step:
Consider other usual pruning mechanisms in Prolog and and see
how "interactive" they can be made:

!/0

soft cut

other backtracking modi�ers

intelligent backtracking

...

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

Conclusions

Relate cut-elimination and proof search;

An interactive framework for proof search;

Enriching the search environment by adding more tests as
computation goes on;

Syntax/Semantics: due to the �monistic� approach of Ludics,
we get an abstract evaluation framework (SLAM) and we
bene�t from ludics semantical tools (behaviours, internal
completeness);

Much to make it more expressive: control/pruning operators,
�rst order, exponentials, ...

Alexis Saurin Lambda, Università degli Studi di Torino (currently) Parsifal, INRIA Saclay & École Polytechnique (until recently)An Interactive Foundation for Computation as Proof-Search

