
Using SMT Solver in Detection of Buffer

Overflow Bugs

Milena Vujošević–Janičić

Faculty of Mathematics, University of Belgrade

Studentski trg 16, Belgrade, Serbia

www.matf.bg.ac.yu/~milena

Second Workshop on Formal and Automated Theorem Proving

and Applications

Belgrade, Serbia, January 30-31, 2009.



Context

• SAT and SMT solvers have many applications in software

and hardware verification tasks.

• One application of SMT solvers in detection of buffer over-

flows will be presented.

• This work was a main part of my MSc thesis (advisor: prof. Dušan

Tošić).

• The work was presented at 3rd International Conference on

Software and Data Technologies (ICSOFT, Porto, 2008).

1



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

2



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

3



Buffer Overflows

• A buffer overflow (or buffer overrun) is a programming flaw
which enables storing more data in a data storage area (i.e. buf-
fer) than it was intended to hold.

• Buffer overflows are the most frequent and the most critical
flaws in programs written in C.

• Buffer overflows are suitable targets for security attacks and
source of serious programs’ misbehavior. Buffer overflows
account for around 50% of all software vulnerabilities.

• The problem of automated detection of buffer overflows has
attracted a lot of attention over the last ten years.

4



Buffer Overflows — Static Analysis Tools

• Lexical analysis (ITS4 (2000), RATS (2001), Flawfinder (2001))

• Semantical analysis

– BOON (Univ. of California, Berkeley, USA, 2000)

– Splint (Univ. of Virginia, USA, 2001)

– CSSV (Univ. of Tel-Aviv, Israel, 2003)

– ARCHER (Stanford University, USA, 2003)

– UNO (Bell Laboratories, 2001)

– Caduceus (Univ. Paris-Sud, Orsay, France, 2007)

– Polyspace C Verifier, AsTree, Parfait, Coverty, CodeSonar

5



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

6



Proposed Approach

• The proposed approach belongs to the group of static anal-
ysis methods based on semantical analysis of source code.

• The goal is to make a system with a flexible architecture
that enables easily changing of components of the system
and simple communication with different external systems.

• Correctness conditions are expressed in terms of first order
logic and checked by an SMT solver for linear arithmetic.

• Due to the nature of the pointer arithmetic, the theory of
linear arithmetic is suitable for this purpose.

7



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

8



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

9



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

10



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

11



Proposed Approach — Database of Conditions

• The database of conditions is used for generating correctness
conditions for individual commands.

• The database stores triples (precondition, command, post-
condition). The semantics of a database entry (φ, E, ψ) is:

– in order E to be safe, the condition φ must hold;

– in order E to be flawed, the condition ¬φ must hold;

– after E, the condition ψ holds.

• The database is external and open, the user can add or re-
move entries. Initially, it stores reasoning rules about opera-
tors and functions from the standard C library.

12



Proposed Approach — Modelling Semantics of Programs

• For defining correctness conditions we use meta-level func-
tions:

– value, returns a value of a given variable;

– size, returns a number of elements allocated for a buffer;

– used, relevant only for string buffers, returns a number of
elements used by the given buffer (including ’\0’).

• These functions have an additional argument called state or
timestamp, which provides basis for flow-sensitive analysis
and a form of pointer analysis.

13



Proposed Approach — Generating Correctness Conditions

• Examples of database entries:

precondition command postcondition
– char x[N] size(x,1) = value(N,0)
– x = y value(x,1) = value(y,0)

• For an individual command C, if there is a database entry
(φ, E, ψ) such that there is a substitution σ such that C = Eσ,
then precond(C) = φσ and postcond(C) = ψσ.

• States are updated in order to take into account the wider
context of the command. For example:

code postcondition
int a,b; —
a = 1; value(a,1) = value(1,0)
b = 2; value(b,1) = value(2,0)
a = b; value(a,2) = value(b,1)

14



Proposed Approach — Generating Correctness Conditions

• Ground expressions are evaluated (for example, value(10,0)
evaluates to 10).

• Postcondition for an if command are constructed as follows:

precondition command postcondition
– if(p)
– { p
precond(C1) C1; postcond(C1)
precond(C2) C2; postcond(C2)

...; ...
– } (p ∧ postcond(C1) ∧ postcond(C2)...)

∨(¬p ∧ update states)

• Currently, loops are processed in a limited manner — only
the first iteration is considered.

15



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

16



Proposed Approach — Correctness Conjectures

• For a command C, let Φ be conjunction of postconditions
for all commands that precede C. The command C is:

– safe, if (∀∗)(Φ ⇒ precond(C)) is valid;

– flawed, if (∀∗)(Φ ⇒ ¬precond(C)) is valid;

– unsafe, if neither of above;

– unreachable, if it is both safe and flawed.

• Before sending conjectures to the prover, elimination of ir-
relevant conjuncts and abstraction are applied.

• Conjectures are transformed to SMT-LIB format.

17



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

18



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands
– evaluating ground expressions

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating irrelevant conjuncts
– abstraction

Conjectures
SMT solver for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

19



Proposed Approach — Example

For the following fragment of code:
char src[200];
fgets(src,200,stdin);
if the database of conditions contains the following entries:

precondition command postcondition
– char x[N] size(x,1) = value(N,0)

∧used(x,1) > 0
size(x,0) ≥ value(y,0) fgets(x,y,z) used(x,1) ≤ value(y,0)

∧used(x,1) > 0

then the following conditions are generated:

precondition command postcondition
– char src[200] size(src,1) = value(200,0)

∧used(src,1) > 0
size(src,0) ≥ value(200,0) fgets(src,200,stdin) used(src,1) ≤ value(200,0)

∧used(src,1) > 0

20



Proposed Approach — Example

Using the generated conditions, after the evaluation, the cor-
rectness conjecture for the command fgets(src,200,stdin) is

(0 < used(src,1)) ∧ (size(src,1) = 200) ⇒ (size(src,1) ≥ 200)

There are no irrelevant conjuncts, so after abstraction, the
conjecture becomes:

(0 < used src 1) ∧ (size src 1 = 200) ⇒ (size src 1 ≥ 200)

This formula is transformed to SMT-LIB format and sent to

the SMT solver which can confirm its validity. The usage of the

command fgets(src,200,stdin) is safe.

21



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

22



The FADO Tool

• FADO (Flexible Automated Detection of Buffer Overflows)
is implemented in C++, it consists of ≈ 13000 lines of code
organized in 35 classes.

• It uses two external systems:

– JSCPP parser (developed by Jörg Schön)

– ArgoLib (developed by Filip Marić) — SMT solver for
linear arithmetic, based on the simplex method, meets
SMT-LIB standards

• Modularity makes the tool very flexible: different components
can be easily updated or replaced by alternatives.

23



FADO Tool — Experimental results

The results of experimental comparison based on 291 bench-

marks used in one MIT study:

Tool Detection False Confusion Average CPU
rate alarm rate time

rate spent

PolySpace 99.7 0.0 2.4 172.53s
ARCHER 90.7 0.0 0.0 0.25s
FADO 57.0 6.5 12.5 0.16s
Splint 56.4 12 21.3 0.02s
UNO 51.9 0.0 0.0 0.02s
BOON 0.7 0.0 0.0 0.06s

24



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

25



Conclusions and Future Work

• Static, modular system for automated detection of buffer

overflows in programs written in C is presented.

• The underlying reasoning rules are not hard-coded into the

system.

• Correctness conditions are given explicitly in logical terms

and checked by an external SMT solver for linear arithmetic.

• The FADO tool is a prototype implementation of the pre-

sented system, and it gives promising results.

26



Conclusions and Future Work

• Future work:

– Extend the system to preform a deeper analysis of loops

and of user defined functions, so the system will be sound

and its inter-procedural analysis will be fully automatic.

– Use SMT solvers with more expressive background theo-

ries.

– Extend the system for other sorts of program analysis

(e.g., detecting memory leaks).

27



Thank You for Your Attention

28


