
Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Invariant Based Programming

Ralph-Johan Back

Abo Akademi University, Dept. of Information Technologies

Third Workshop on Formal and Automated Theorem Proving and
Applications January 29-30, 2010, Belgrade, Serbia

January 29, 2010

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Teaching programming

• Teaching programming is known to be very difficult
• Studies show that students have big difficulties in

• understanding how a program works
• designing a program
• checking whether the program works correctly,
• etc

• Introductory programming courses usually focus on
teaching programming through a programming language

• teach syntax of a standard programming language like
Java, C, to Python,

• show how to implement some simple algorithms in the
chosen programming language

• teach how to run and test these algorithms, and how to
debug them

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Problems with this approach

• Most of the time is spent on learning the special features
of syntax

• less time for learning how to design algorithms
• and implement them correctly as executable programs

• The basic idea of how an algorithm / program works, and
why, often remains unclear

• the execution model can be quite complex, e.g.,
object-oriented systems

• the code - test - debug cycle gives little insight into the
overall working of the program

• Students are taught from the very beginning that software
bugs are unavoidable

• guess and test approach to solving programming problems
• low quality software is acceptable
• no tools are given for producing higher quality software

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Programming as mathematics

• Our purpose here is to show how to teach programming as
a mathematics course

• without a specific programming language
• using a graphical presentation of programs
• focusing on building programs that are proved correct

mathematically

• Place in curriculum
• Not necessarily the first course on programming (which

could be, e.g., Python), but maybe the second course
• Could be taught both in introductory CS courses and in

high school
• Teaches students to understand how programs work, how

to design programs, and how to analyze their correctness

• Need not be more difficult than any ordinary high school
math course (but maybe not much easier either)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Goal here

• Presentation next is inteded to show how a short course on
formal methods in programming could be given to

• high school students (as a mathematics course).
• first year CS students (as a course on formal methods in

programming)

• The lecture is here very compressed, in a real course the
material would be spread over a number of lectures, with a
lot of examples and class excercises

• Have taught this material to math teachers in Austria
(Graz) last year.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Main point and a caveat

• Main point 1: We teach formal methods using the
invariant based programming approach

• Main point 2: this is more or less ALL the theory that is
needed for teaching formal methods in programming

• Caveat: but we assume that the students have a basic
familiarity with

• logic (propositional calculus and predicate calculus basics)
• using predicate calculus to express mathematical properties
• reasoning about logical properties

• We teach this in a preceeding course, called structured
derivations (essentially, how to use practical logic in
mathematics).

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Outline

1 Programming as mathematics

2 Mathematics of programming

Situations

Programs

Correctness

Invariant diagrams

Consistency

Termination and liveness

3 Invariant based programming

4 Case study

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situations

A situation describes a specific set of circumstances of a
system. A situation

• has a name,
• a list of attributes that are used to observe the system
state,

• a list of constraints that restrict the possible values that
the attributes can take,

• concrete examples of the situation (a figure, a graph, a
table, some text, etc.),

• a list of properties that hold in this situation,
• proofs of the properties stated in the situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situations

A situation describes a specific set of circumstances of a
system. A situation

• has a name,
• a list of attributes that are used to observe the system
state,

• a list of constraints that restrict the possible values that
the attributes can take,

• concrete examples of the situation (a figure, a graph, a
table, some text, etc.),

• a list of properties that hold in this situation,
• proofs of the properties stated in the situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situations

A situation describes a specific set of circumstances of a
system. A situation

• has a name,
• a list of attributes that are used to observe the system
state,

• a list of constraints that restrict the possible values that
the attributes can take,

• concrete examples of the situation (a figure, a graph, a
table, some text, etc.),

• a list of properties that hold in this situation,
• proofs of the properties stated in the situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situations

A situation describes a specific set of circumstances of a
system. A situation

• has a name,
• a list of attributes that are used to observe the system
state,

• a list of constraints that restrict the possible values that
the attributes can take,

• concrete examples of the situation (a figure, a graph, a
table, some text, etc.),

• a list of properties that hold in this situation,
• proofs of the properties stated in the situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situations

A situation describes a specific set of circumstances of a
system. A situation

• has a name,
• a list of attributes that are used to observe the system
state,

• a list of constraints that restrict the possible values that
the attributes can take,

• concrete examples of the situation (a figure, a graph, a
table, some text, etc.),

• a list of properties that hold in this situation,
• proofs of the properties stated in the situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situations

A situation describes a specific set of circumstances of a
system. A situation

• has a name,
• a list of attributes that are used to observe the system
state,

• a list of constraints that restrict the possible values that
the attributes can take,

• concrete examples of the situation (a figure, a graph, a
table, some text, etc.),

• a list of properties that hold in this situation,
• proofs of the properties stated in the situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example situation

Right triangle

var a, b , c , h : real
- the triangle is right, with

hypotenuse c and catheters
a and b,

- h is the height of the
triangle on the hypotenuse

- h divides the hypotenuse in
the proportion 3:7

• a2 + b2 = c2

 {Pythagoras’ theorem}

• a
b =

√
3√
7

 . . . proof . . .

a

b

c

h

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Situation in general

Situation name

var . . . list of variables . . .
- . . . constraint . . .
- . . . another constraint . . .
...
• . . . a property

 . . . proof . . .
• . . . another property

 . . . proof . . .
...

. . . example of the
situation . . .

. . . another example . . .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Outline

1 Programming as mathematics

2 Mathematics of programming

Situations

Programs

Correctness

Invariant diagrams

Consistency

Termination and liveness

3 Invariant based programming

4 Case study

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Programs

A program can be seen as an activity that takes us from some
given initial situation to a desired final situation

Global environment

var a,b,c
... constraints ...

Initial situation

... constraints ...

Final situation

... constraints ...

program

Here a, b, c are program variables declared in the
environment.
Can consider program variables as attributes
(observations) of the program state

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Example: compute sum

Compute the sum of the first n integers.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial situation Final situation

sum = 1+2+ ... +n

program

Program variables n and sum are defined in the
environment, constrained by n ≥ 0.
The program computes the sum of the first n integers
and assigns it to the variable sum.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program as flow chart

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

F

The program first initializes k to 0 and sum to 0. Then, it tests
whether k < n. If this is true, then k is increase by 1, and sum
is increase by k , and we repeat the test. If k < n is false, then
we are finished.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Outline

1 Programming as mathematics

2 Mathematics of programming

Situations

Programs

Correctness

Invariant diagrams

Consistency

Termination and liveness

3 Invariant based programming

4 Case study

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Traditional method to check correctness for simple
programs is by simulating execution by hand.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

F

•
n k sum

1 3 0 0

2 3 1 1

3 3 2 3

4 3 3 6

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Traditional method to check correctness for simple
programs is by simulating execution by hand.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

F

•
n k sum

1 3 0 0

2 3 1 1

3 3 2 3

4 3 3 6

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Traditional method to check correctness for simple
programs is by simulating execution by hand.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

F

•
n k sum

1 3 0 0

2 3 1 1

3 3 2 3

4 3 3 6

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Traditional method to check correctness for simple
programs is by simulating execution by hand.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

F

•
n k sum

1 3 0 0

2 3 1 1

3 3 2 3

4 3 3 6

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Traditional method to check correctness for simple
programs is by simulating execution by hand.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

F

•
n k sum

1 3 0 0

2 3 1 1

3 3 2 3

4 3 3 6

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Alternative program

• But what about the following program, is it correct.
Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

sum:= sum+k;
k:= k+1

k, sum:= 1,0

T

F

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Actually, no

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

sum:= sum+k;
k:= k+1

k, sum:= 1,0

T

F

•
n k sum

1 3 1 0

2 3 2 1

3 3 3 3

• wrong result!

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Actually, no

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

sum:= sum+k;
k:= k+1

k, sum:= 1,0

T

F

•
n k sum

1 3 1 0

2 3 2 1

3 3 3 3

• wrong result!

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Actually, no

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

sum:= sum+k;
k:= k+1

k, sum:= 1,0

T

F

•
n k sum

1 3 1 0

2 3 2 1

3 3 3 3

• wrong result!

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Actually, no

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

sum:= sum+k;
k:= k+1

k, sum:= 1,0

T

F

•
n k sum

1 3 1 0

2 3 2 1

3 3 3 3

• wrong result!

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Is the program correct

• Actually, no

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

sum:= sum+k;
k:= k+1

k, sum:= 1,0

T

F

•
n k sum

1 3 1 0

2 3 2 1

3 3 3 3

• wrong result!

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

What is correctness

• The program is correct, if the following holds:
• whenever the program is started in an initial situation,
• then it eventually terminates in a final situation
• with values for program variables that satisfy all

constraints of the final situation

• The summation program is correct, if the following holds:
• whenever n ≥ 0 holds initially,
• then the program eventually terminates in the final

situation
• where sum = 1 + 2 + . . . + n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Checking correctness

• There are infinitely many possible executions in the sum
program (one for each value on n),

• therefore not possible to check that the program works
correctly by just testing the program for each n,

• But we can prove mathematically that the program works
correctly.

• Proving correctness requires that we add an intermediate
situation (a loop invariant) to the program

• The loop invariant corresponds to an induction hypothesis
• It describes the situation at the indicated point in the loop

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop invariant

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

Fvar k: integer

0 ≤ k ≤ n
sum=1+2+...+k

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Outline

1 Programming as mathematics

2 Mathematics of programming

Situations

Programs

Correctness

Invariant diagrams

Consistency

Termination and liveness

3 Invariant based programming

4 Case study

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Nested invariant diagram

• In stead of flow charts, the program can be described as a
(nested) invariant diagram. This describes the program in
terms of

• a collection of situations that can occur during program
execution, and

• a collection of transitions between these situations

• The situations can be divided into initial situations, final
situations, and intermediate situations.

• A situation can be nested inside another situation:
• the nested situation inherits the constraints of all enclosing

situations

• An invariant diagram contains all the information that is
needed to prove that the program is correct.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Sum program as invariant diagram

.

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

In the intermediate situation, the sum of the first k integers has
been computed.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Flow chart versus invariant diagram

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n
k < n

k:=k+1;
sum:= sum+k

k, sum:= 0,0

T

Fvar k: integer

0 ≤ k ≤ n
sum=1+2+...+k

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Statements written on arrows, rather than in boxes
• Guards on arrows
• Situations can be nested

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Transitions

• A transition is an arrow from one situation to another,
where the arrow is labelled a statement

• A statement can be either:
• a guard of the form [b] : the transition is only taken if the

condition b holds for the present values of program
variables

• an assignment of the form x1, . . . , xn := e1, . . . , en: assigns
the value of expression ei to the variable xi , for i = 1, . . . , n

• a sequential composition A1; A2; . . . ; Ak of guards and
assignments

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Executing a transition

• The transition is executed one guard or assignment at a
time

• If we reach a guard which is not satisfied, then the whole
transition is disabled (i.e., will not be executed)

statement (x , y)

(1, 2)
(x < y); T
x := x + y ; (3, 2)
y := y + 1; (3, 3)
(x = y); T
x := x − y (0, 3)

enabled

statement (x , y)

(2, 4)
(x < y); T
x := x + y ; (6, 4)
y := y + 1; (6, 5)
(x = y); F
x := x − y

not enabled

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Program execution

Compute sum
var n:integer, sum: integer
n ≥ 0

Initial
situation

Final situation

sum=1+2+...+n

Intermediate situation
var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k,sum:= 0,0

 [k=n]

[k<n]

k:= k+1;
sum:= sum+k

• Starts in initial situation,
with values for the
program variables

• execution follows the
arrows, from one situation
to the next

• an arrow can only be
traversed if the guards on
the arrow are satisfied
(transition is enabled)

• if two or more transitions
are enabled in the same
situation, one of them is
chosen (non
deterministically)

• the statement on the
selected arrow is then
executed

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Termination

Execution terminates when we reach a situation from which no
transition is enabled

• if the situation is a final situation, then the program
terminates normally

• if the situation is not a final situation, then the program
has deadlocked.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Termination

Execution terminates when we reach a situation from which no
transition is enabled

• if the situation is a final situation, then the program
terminates normally

• if the situation is not a final situation, then the program
has deadlocked.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Proving correctness

To prove that the program is correct, we need to establish three
properties: consistency, termination and liveness.

• consistency means that each transition is correct, in the
sense that :

• if the start situation holds before executing the transition,
• then the end situation holds when the transition finishes

• termination means that execution always terminates when
we start from an initial situation,

• i.e., we eventually reach a situation where no transition is
enabled

• liveness means that we only terminate in a final situation

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Proving correctness

To prove that the program is correct, we need to establish three
properties: consistency, termination and liveness.

• consistency means that each transition is correct, in the
sense that :

• if the start situation holds before executing the transition,
• then the end situation holds when the transition finishes

• termination means that execution always terminates when
we start from an initial situation,

• i.e., we eventually reach a situation where no transition is
enabled

• liveness means that we only terminate in a final situation

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Proving correctness

To prove that the program is correct, we need to establish three
properties: consistency, termination and liveness.

• consistency means that each transition is correct, in the
sense that :

• if the start situation holds before executing the transition,
• then the end situation holds when the transition finishes

• termination means that execution always terminates when
we start from an initial situation,

• i.e., we eventually reach a situation where no transition is
enabled

• liveness means that we only terminate in a final situation

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Proving correctness

To prove that the program is correct, we need to establish three
properties: consistency, termination and liveness.

• consistency means that each transition is correct, in the
sense that :

• if the start situation holds before executing the transition,
• then the end situation holds when the transition finishes

• termination means that execution always terminates when
we start from an initial situation,

• i.e., we eventually reach a situation where no transition is
enabled

• liveness means that we only terminate in a final situation

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Proving correctness

To prove that the program is correct, we need to establish three
properties: consistency, termination and liveness.

• consistency means that each transition is correct, in the
sense that :

• if the start situation holds before executing the transition,
• then the end situation holds when the transition finishes

• termination means that execution always terminates when
we start from an initial situation,

• i.e., we eventually reach a situation where no transition is
enabled

• liveness means that we only terminate in a final situation

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Proving correctness

To prove that the program is correct, we need to establish three
properties: consistency, termination and liveness.

• consistency means that each transition is correct, in the
sense that :

• if the start situation holds before executing the transition,
• then the end situation holds when the transition finishes

• termination means that execution always terminates when
we start from an initial situation,

• i.e., we eventually reach a situation where no transition is
enabled

• liveness means that we only terminate in a final situation

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Outline

1 Programming as mathematics

2 Mathematics of programming

Situations

Programs

Correctness

Invariant diagrams

Consistency

Termination and liveness

3 Invariant based programming

4 Case study

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check consistency of sum program

Need to prove that the following transitions are correct:

• Initialization transition
• Finalization transition, and
• Loop transition

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Adapting transitions

We rewrite the transitions to explicitly indicate the new values
computed when executing the transition, by introducing new
(dashed) variables for all new values computed:

statement constraint
(x < y); —> x < y
x := x + y ; x ′ = x + y
y := y + 1; y ′ = y + 1
(x ≤ y + 10); x ′ ≤ y ′ + 10
x := x − y x ′′ = x ′ − y ′

• Here
• x , x ′, x ′′ are the successive values assigned to x , and
• y , y ′are the successive values assigned to y .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Correctness of transition

We prove that a transition S from situation P to situation Q is
correct, by showing the following:

• assuming that the constraints of P hold for the program
variables

• and that the new values of the program variables at the end
of the transition are computed according to statement S ,

• then all constraints in situation Q hold for the new values
of the program variables

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Summation program
Sum program with transitions described using dashed variables.

We also omit situation names here (not needed for
mathematical analysis)

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initialization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0

Transition
- k ′ = 0 ∧ sum′ = 0

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute values k ′ = 0
and sum′ = 0}
0 : integer∧
0 ≤ 0 ≤ n∧
0 = 1 + 2 + . . . + 0∧
0 : integer

⇐ {assumption n ≥ 0}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Finalization transition

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k = n

• sum = 1 + 2 + . . . + n
≡ {guard k = n}

sum = 1 + 2 + . . . + k

⇐ {assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k ′ =
sum + k + 1}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k + 1 =
1 + 2 + . . . + (k + 1)∧
sum + k + 1 : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k

≡ {guard and assumption}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Detecting errors

Assume that we make a small error in the loop transition:

• we write
sum := sum + k ; k := k + 1

• in stead of

k := k + 1; sum := sum + k

What happens with the proof.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Loop transition
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1;
sum' = sum+k'

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- sum′ = sum + k
- k ′ = k + 1
-

• k ′ : integer∧
0 ≤ k ′ ≤ n∧
sum′ = 1 + 2 + . . . + k ′∧
sum′ : integer

≡ {substitute k ′ = k + 1 and
sum′ = sum + k}
k + 1 : integer∧
0 ≤ k + 1 ≤ n∧
sum + k =
1 + 2 + . . . + (k + 1)∧
sum + k : integer

≡ {assumptions}
k + 1 ≤ n∧
sum = 1 + 2 + . . . + k + 1

≡ {guard and assumption
sum = 1 + 2 + . . . + k}
0 = 1

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Outline

1 Programming as mathematics

2 Mathematics of programming

Situations

Programs

Correctness

Invariant diagrams

Consistency

Termination and liveness

3 Invariant based programming

4 Case study

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Termination

• Select intermediate situations such that each loop is cut by
one of these intermediate situation

• Associate a variant expression e with each such
intermediate situation, and check that

• e ≥ 0 holds in this situation,
• the value of e has decreased whenever we re-enter this

situation, and
• the value of e is never increased in the program

• We express the termination condition by writing e ≥ 0 in
the upper right corner of the intermediate situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Variant for sum program
The value of n − k is decreased by each iteration in the sum
program, but it never becomes negative. Choose n − k as the
variant.

Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Boundedness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• n − k ≥ 0
≡ {arithmetic}

n ≥ k
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Boundedness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• n − k ≥ 0
≡ {arithmetic}

n ≥ k
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Boundedness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• n − k ≥ 0
≡ {arithmetic}

n ≥ k
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Boundedness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• n − k ≥ 0
≡ {arithmetic}

n ≥ k
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Boundedness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• n − k ≥ 0
≡ {arithmetic}

n ≥ k
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Decrease
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

Transition
- k ≤ n
- k ′ = k + 1
- sum′ = sum + k + 1

• n − k ′ < n − k
≡ {substitute k ′ = k + 1}

n − (k + 1) < n − k
≡ {arithmetic}

n − k − 1 < n − k
≡ {arithmetic}

−1 < 0
≡ {arithmetic}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check liveness

Finally, we need to prove liveness:

• check that execution does not get stuck in an intermediate
situation

This is true, if at least one of the outgoing transitions is always
enabled in an intermediate situation.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Liveness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• k < n ∨ k = n
≡ {arithmetic}

k ≤ n
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Liveness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• k < n ∨ k = n
≡ {arithmetic}

k ≤ n
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Liveness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• k < n ∨ k = n
≡ {arithmetic}

k ≤ n
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Liveness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• k < n ∨ k = n
≡ {arithmetic}

k ≤ n
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Liveness
Compute sum
var n:integer, sum: integer
n ≥ 0

sum=1+2+...+n

var k: integer

0 ≤ k ≤ n
sum=1+2+...+k

k',sum'= 0,0

 [k=n]

[k<n]

k' = k+1
sum' = sum+k'

n - k ≥ 0

Assume
- n, sum : integer , n ≥ 0
- k : integer , 0 ≤ k ≤ n
- sum = 1 + 2 + . . . + k

• k < n ∨ k = n
≡ {arithmetic}

k ≤ n
⇐ {assumption}

T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Opportunity for SAT/SMT solvers

• The number of things that must be checked is quite large
• But most of the properties checked are rather trivial
• Would like an automatic way of discharging most of the
simple proof obligations

• Show only to the programmer
• those properties that are false, and
• those properties that could not be proved

• These are most likely indications of some errors in the
program

• either some situation is wrongly or incompletely described
• or some transition or termination function is wrong
• or some theory is wrong or incomplete

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Constructing correct programs:
alternative approaches

• A posteriori correctness proof (Floyd, Naur, Hoare, ...).
Prove correctness after program has been written and
debugged.

• Constructive proofs (Dijkstra, ...). Construct the
program and its proof hand in hand, to satisfy given pre-
and postconditions.

• Invariant based programming (Reynolds, van Emden,
Back, ...). Formulate the program invariants first, then
construct code that maintains these invariants. (Hehner
has similar idea, but starts from relations rather than
predicates)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Constructing correct programs:
alternative approaches

• A posteriori correctness proof (Floyd, Naur, Hoare, ...).
Prove correctness after program has been written and
debugged.

• Constructive proofs (Dijkstra, ...). Construct the
program and its proof hand in hand, to satisfy given pre-
and postconditions.

• Invariant based programming (Reynolds, van Emden,
Back, ...). Formulate the program invariants first, then
construct code that maintains these invariants. (Hehner
has similar idea, but starts from relations rather than
predicates)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Constructing correct programs:
alternative approaches

• A posteriori correctness proof (Floyd, Naur, Hoare, ...).
Prove correctness after program has been written and
debugged.

• Constructive proofs (Dijkstra, ...). Construct the
program and its proof hand in hand, to satisfy given pre-
and postconditions.

• Invariant based programming (Reynolds, van Emden,
Back, ...). Formulate the program invariants first, then
construct code that maintains these invariants. (Hehner
has similar idea, but starts from relations rather than
predicates)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Place of coding in work flow

A posteriori proof Invariant based programming

Program code

Pre/postconditions

Loop invariants

Pre/postconditions

Program
code

Loop

Pre/postconditions

Loop invariants

Program code

VerificationVerificationVerification

invariants

Constructive approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Questions

• Is it feasible (and practical) to construct the program
invariants (situations) before we have constructed any code

• What are the main difficulties when using invariant based
programming

• Is it feasible to teach invariant based programming to
novices (CS students, high school students)

• What kind of computer support can we provide for
invariant based programming

• Does the approach scale up to larger programs and more
complex software systems.

• Where do I find out more about the approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Questions

• Is it feasible (and practical) to construct the program
invariants (situations) before we have constructed any code

• What are the main difficulties when using invariant based
programming

• Is it feasible to teach invariant based programming to
novices (CS students, high school students)

• What kind of computer support can we provide for
invariant based programming

• Does the approach scale up to larger programs and more
complex software systems.

• Where do I find out more about the approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Questions

• Is it feasible (and practical) to construct the program
invariants (situations) before we have constructed any code

• What are the main difficulties when using invariant based
programming

• Is it feasible to teach invariant based programming to
novices (CS students, high school students)

• What kind of computer support can we provide for
invariant based programming

• Does the approach scale up to larger programs and more
complex software systems.

• Where do I find out more about the approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Questions

• Is it feasible (and practical) to construct the program
invariants (situations) before we have constructed any code

• What are the main difficulties when using invariant based
programming

• Is it feasible to teach invariant based programming to
novices (CS students, high school students)

• What kind of computer support can we provide for
invariant based programming

• Does the approach scale up to larger programs and more
complex software systems.

• Where do I find out more about the approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Questions

• Is it feasible (and practical) to construct the program
invariants (situations) before we have constructed any code

• What are the main difficulties when using invariant based
programming

• Is it feasible to teach invariant based programming to
novices (CS students, high school students)

• What kind of computer support can we provide for
invariant based programming

• Does the approach scale up to larger programs and more
complex software systems.

• Where do I find out more about the approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Questions

• Is it feasible (and practical) to construct the program
invariants (situations) before we have constructed any code

• What are the main difficulties when using invariant based
programming

• Is it feasible to teach invariant based programming to
novices (CS students, high school students)

• What kind of computer support can we provide for
invariant based programming

• Does the approach scale up to larger programs and more
complex software systems.

• Where do I find out more about the approach

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

From algorithm to correct program

• Invariant based programming starts from a rough idea of
how the algorithm is intended to work

• The basic work flow of invariant based programming is
intended to turn this algorithmic idea into

• an executable program
• that has been mathematically proved correct.

• The level of rigour in the mathematical proof can vary
• from rough hand checked transitions,
• through rigorous mathematical proofs(e.g., using

structured derivations),
• to completely machine checked proofs.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Basic work flow

1 Draw figures that illustrates the basic data structures
2 Identify the basic situations in the algorithm
3 Formalize the constraints of each situation in some logical

language
• extend the underlying theory with new definitions and

concepts as needed

4 Connect situations with transitions
• Check that each transition is correct at the same time

5 Then check that
• the program terminates
• and that the program is live

6 Adjust situations and transitions whenever there is a
problem in the proof, and recheck

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Experiments with invariant based
programs

• We have been trying this approach in a number of small
sessions

• Usually two persons constructing an invariant based
program together

• IFIP WG 2.3 members
• programmers without a priori knowledge of formal methods
• undergraduate, graduate and Ph.D. students

• Session usually takes 2.5 - 3 hours. Some 15 sessions done
this far

• Programming problem a standard small one:
• sorting, searching, Dutch national flag, computing some

property of a tree, etc. Usually doable with one or two
nested loops.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Experiences

• The approach works well, for IFIP WG2.3 members as well
as for novices to program verification

• Finding initial invariants is quite easy when one starts from
a figure

• Invariant is improved when transitions are introduced one
by one

• Some very subtle bugs are found in transitions/invariants
during verification

• Tool support for automatic checking highly desirable (but
we can live without it for small programs)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Stages in work flow for single loop
program

Final situation

Initial situation

Intermediate
situation

entry
transition

exit
transition

iteration
transition

termination function

• draw figure
• extend theory
• formulate in
logic

• extend
diagram

• check
correctness

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Difficulty (subjective assessment)

figures extend theory formulate extend diagram check

initial situation X X X X

final situation XX XXX XX X

intermediate sit X XXX XX X

entry transition X X X

exit transition X X X

iteration trans XX X XX

termination X X X X

liveness X X

difficulty medium can be hard medium/easy easy medium

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

CS curriculum at Åbo Akademi

• First year students:
• Structured derivations (logic course based on structured

derivations)
• Introduction to programming (based on Python language)
• Mathematics of programming (invariant based

programming)

• These courses have been taught now for 3 - 4 years
• experiences are good
• students master these courses
• they appreciate the added understanding that it brings to

mathematics and programming

• First two courses have been taught in high school also, but
third (invariant based programming) has only been taught
at university level

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Computer support: the Socos
environment

• The Socos environment supports invariant based
programming

• Provides a graphical and textual representation of invariant
based programs

• Uses theorem provers to automatically discharge
verification conditions (PVS, Simplify, Yices)

• Socos only shows proof obligations that have not been
proved automatically.

• Environment compiles invariant based program directly to
Python; executes them, has a debugging mode

• Can also check procedure pre- and postconditions and
invariants during run time

• New version, Socos 2, is being finalized.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Lessons learnt

• Novices have difficulties with formulating invariants.
Teaching logic (structured derivations) to programmers
should take care of this difficulty

• Proving correctness of transitions is important and
revealing, but it is tedious, both for experts and novices.
Providing mechanized tool support for proving verification
conditions is crucial for scaling up the approach.

• Formulating iteration transition is error prone. Verifying
the correctness of the transition is a very efficient way of
revealing errors here.

• Some students do not know how to draw diagrams and
figures anymore. Thinking is done directly in a terms of
programming language constructs.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Lessons learnt

• Novices have difficulties with formulating invariants.
Teaching logic (structured derivations) to programmers
should take care of this difficulty

• Proving correctness of transitions is important and
revealing, but it is tedious, both for experts and novices.
Providing mechanized tool support for proving verification
conditions is crucial for scaling up the approach.

• Formulating iteration transition is error prone. Verifying
the correctness of the transition is a very efficient way of
revealing errors here.

• Some students do not know how to draw diagrams and
figures anymore. Thinking is done directly in a terms of
programming language constructs.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Lessons learnt

• Novices have difficulties with formulating invariants.
Teaching logic (structured derivations) to programmers
should take care of this difficulty

• Proving correctness of transitions is important and
revealing, but it is tedious, both for experts and novices.
Providing mechanized tool support for proving verification
conditions is crucial for scaling up the approach.

• Formulating iteration transition is error prone. Verifying
the correctness of the transition is a very efficient way of
revealing errors here.

• Some students do not know how to draw diagrams and
figures anymore. Thinking is done directly in a terms of
programming language constructs.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Lessons learnt

• Novices have difficulties with formulating invariants.
Teaching logic (structured derivations) to programmers
should take care of this difficulty

• Proving correctness of transitions is important and
revealing, but it is tedious, both for experts and novices.
Providing mechanized tool support for proving verification
conditions is crucial for scaling up the approach.

• Formulating iteration transition is error prone. Verifying
the correctness of the transition is a very efficient way of
revealing errors here.

• Some students do not know how to draw diagrams and
figures anymore. Thinking is done directly in a terms of
programming language constructs.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Theory building
• Working out the central concepts needed in order to
formulate pre- and postconditions and invariants (theory
building) is the most demanding task.

• Usually takes almost half of overall session time. Difficult
for both novices and experts.

• Effort for building theory can be amortized over many
different programs constructed over the same application
domain. Should not be counted fully when evaluating how
difficult and time consuming it is to build formally verified
programs.

• Theory building needs to be done anyway, in order to
specify application program modules, to define application
libraries, to determine primitive operations for the
application domain, etc.

• Theory building for algorithms in different domains can be
seen as one of the central research topics in Computer
Science

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Research topics

• Semantics and proof theory of invariant based
programming

• Scaling up approach to procedures, data modules, classes
and objects, concurrent and distributed systems

• Automatic verification of transition correctness
• Using invariant based programming for complex
algorithmic problems (e.g., geographic algorithms, pointer
manipulation programs, etc.)

• Teaching invariant based programming to novices
• Experimenting with constructing larger, modularized
invariant based program

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Find out more

• Imped: Improving mathematics and programming
education in high school (resource center,
crest.abo.fi/imped)

• Using structured derivations (calculational style) in
teaching mathematics in high school

• Using Python as a first programing course in high school
• Teaching invariant based programming in high school and

to first year university/polytechnic students

• Basic papers
• Back, Ralph-Johan: Invariant based programming: basic

approach and teaching experiences, Formal Aspects of
Programming 2008

• Back, Ralph-Johan: Structured derivation as a unified
approach to teaching mathematics, Formal Aspects of
Programming 2009

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Case study: sorting

Problem: Sort an array of integers into non-decreasing order.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

The algorithmic solution

• We consider the simplest possible sorting program,
selection sort.

• Essentially, we sort the array by moving a cursor from left
to right in the array.

• At each stage we find the smallest element to the right of
the cursor, and exchange this element with the cursor
element.

• After this, we advance the cursor, until we have traversed
the whole array.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

The algorithmic solution

• We consider the simplest possible sorting program,
selection sort.

• Essentially, we sort the array by moving a cursor from left
to right in the array.

• At each stage we find the smallest element to the right of
the cursor, and exchange this element with the cursor
element.

• After this, we advance the cursor, until we have traversed
the whole array.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

The algorithmic solution

• We consider the simplest possible sorting program,
selection sort.

• Essentially, we sort the array by moving a cursor from left
to right in the array.

• At each stage we find the smallest element to the right of
the cursor, and exchange this element with the cursor
element.

• After this, we advance the cursor, until we have traversed
the whole array.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

The algorithmic solution

• We consider the simplest possible sorting program,
selection sort.

• Essentially, we sort the array by moving a cursor from left
to right in the array.

• At each stage we find the smallest element to the right of
the cursor, and exchange this element with the cursor
element.

• After this, we advance the cursor, until we have traversed
the whole array.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

A little domain theory

• Sorted(A, i , j) means that the array elements are
non-decreasing in the (closed) interval [i , j],

• Partitioned(A, i) means that every element in array A
below index i is smaller or equal to any element in A at
index i or higher, and

• Permutation(A,A0) means that the elements in array A
form a permutation of the elements in array A0.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

A little domain theory

• Sorted(A, i , j) means that the array elements are
non-decreasing in the (closed) interval [i , j],

• Partitioned(A, i) means that every element in array A
below index i is smaller or equal to any element in A at
index i or higher, and

• Permutation(A,A0) means that the elements in array A
form a permutation of the elements in array A0.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

A little domain theory

• Sorted(A, i , j) means that the array elements are
non-decreasing in the (closed) interval [i , j],

• Partitioned(A, i) means that every element in array A
below index i is smaller or equal to any element in A at
index i or higher, and

• Permutation(A,A0) means that the elements in array A
form a permutation of the elements in array A0.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initial and final situation

A

1

Permutation(A,A0)

sort the array
changing A

n

n1

A Sorted(A,1,n)

Permutation(A,A0)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initial and final situations

var n: integer; A: array [1,n] of integer

Permutation(A,A0)

1 ≤ n

Sorted(A,1,n)

sort array A

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Intermediate situation

1

Permutation(A,A0)

i:=1

1

Sorted

i

Permutation(A,A0)

[i<n] [i=n]

1 n

Sorted

Permutation(A,A0)

swap smallest remaining element with A[i];
i:=i+1

Partitioned(A,i)

n

n

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Formalizing intermediate situation

var n: integer; A: array [1,n] of integer

Permutation(A,A0)

1 ≤ n

var i: integer 1 ≤ i ≤ n

Sorted(A,1,i-1) Partitioned(A,i)

Sorted(A,1,n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Initial and final transitions

var n: integer; A: array [1,n] of integer

Permutation(A,A0)

1 ≤ n

var i: integer 1 ≤ i ≤ n

Sorted(A,1,i-1) Partitioned(A,i)

Sorted(A,1,n)

i:= 1

n - i ≥ 0

[i = n]

[i ≠ n]

swap smallest remain

element with A[i]

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)

Transition
- i ′ = 1

• i ′ : integer
1 ≤ i ′ ≤ n
Sorted(A, 1, i ′ − 1)
Partitioned(A, i ′)

≡ {transition i ′ = 1}
1 : integer
1 ≤ 1 ≤ n
Sorted(A, 1, 0)
Partitioned(A, 1)

≡ {assumptions}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i = n

• T
⇒ {assumptions}

Sorted(A, 1, i − 1) ∧
Partitioned(A, i) ∧ i = n

⇒ {substitution}
Sorted(A, 1, n − 1) ∧
Partitioned(A, n)

⇒ {definition of Sorted and
Partitioned}
Sorted(A, 1, n)

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Identifying the smallest element

• To find the smallest remaining element, we need to scan
over all the remaining elements

• We need a loop here also.
• We add a fourth situation, where part of the unsorted
elements have already been scanned for the least element.

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Scanning for smallest element
1 n

1 ni

Sorted

min(A,i,j)

1 ni

Sorted

k j

1 n

Sorted

i:=1

Permutation(A,A0)

Partitioned(i)

Permutation(A,A0)

Partitioned(i)Permutation(A,A0)

Permutation(A,A0)

[j=n]

A[i],A[k]:=A[k],A[i];
i:=i+1

j,k:=i,i

[i=n]

check next element

[i<n]

[j<n]

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Scanning situation

var n: integer; A: array [1,n] of integer

Permutation(A,A0)

1 ≤ n

var i: integer 1 ≤ i ≤ n

Sorted(A,1,i-1) Partitioned(A,i)

Sorted(A,1,n)

var j,k: integer

A[k] = min(A,i,j)

i < n

i ≤ k ≤ j ≤ ni:= 1

n - i ≥ 0

[i = n]

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Scanning transitions

var n: integer; A: array [1,n] of integer

Permutation(A,A0)

1 ≤ n

var i: integer 1 ≤ i ≤ n

Sorted(A,1,i-1) Partitioned(A,i)

Sorted(A,1,n)

var j,k: integer

A[k] = min(A,i,j)

i < n

i ≤ k ≤ j ≤ ni:= 1

n - j ≥ 0

n - i ≥ 0

[i ≠ n] j, k := i,i

[j ≠ n]

[j=n]

i:= i + 1

A[i], A[k]:= A[k], A[i]

[i = n]

check next element

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check entry transition

Assume
- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

Transition
- i 6= n

- j ′ = i
- k ′ = i

• k ′, j ′ : integer
i ≤ k ′ ≤ j ′ ≤ n
A[k ′] = min{A[h]|i ≤ h ≤
j ′}

≡ {substituting j ′ = i and
k ′ = i}
i , i : integer
i ≤ i ≤ i ≤ n
A[i] = min{A[h]|i ≤ h ≤ i}

≡ {assumption i ≤ n}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Check exit transition

We also check that if j = n, then

A[i],A[k] := A[k],A[i]; i := i + 1

will establish the first intermediate situation, as indicated in the
diagram. Need to check all constraints that involve A and i .

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Assume

- n : integer ,
- A : array [1, n] of integer
- n ≥ 1,
- Permutation(A, A0)
- i : integer ,
- 1 ≤ i ≤ n

Sorted(A, 1, i − 1)
Partitioned(A, i)

- j .k : integer
- A[k] = min(A, i , j)
- i < n
- i ≤ k ≤ j ≤ n
Transition
- j = n
- i ′ = i + 1
- A′ = A[i : A[k], k : A[i]]

• i ′ : integer ∧ 1 ≤ i ′ ≤ n
Sorted(A′, 1, i ′ − 1)
Partitioned(A′, i ′)
Permutation(A′, A0)

≡ { i ′ = i + 1}
i +1 : integer ∧1 ≤ i +1 ≤ n
Sorted(A′, 1, i)
Partitioned(A′, i + 1)
Permutation(A′, A0)

≡ {assumption i < n,
swapping preserves
permutation}
Sorted(A′, 1, i)
Partitioned(A′, i + 1)

≡ {assumption
A[k] = min(A, i , n) and
A′ = A[i : A[k], k : A[i]]}
T

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Innermost loop

var n: integer; A: array [1,n] of integer

Permutation(A,A0)

1 ≤ n

var i: integer 1 ≤ i ≤ n

Sorted(A,1,i-1) Partitioned(A,i)

Sorted(A,1,n)

var j,k: integer

A[k] = min(A,i,j)

i < n

i ≤ k ≤ j ≤ ni:= 1

n - j ≥ 0

n - i ≥ 0

[i ≠ n] j, k := i,i

[j ≠ n]

j:= j+1

[A[j] ≥ A[k]D]

[A[j] < A[k]]; k:=j

[j=n]

i:= i + 1

A[i], A[k]:= A[k], A[i]

[i = n]

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Preserving the invariant

• We need to check that the second invariant is preserved
while making progress. We need to show that when j 6= n,
the statement

j := j + 1; if A[j] < A[k] then k := j fi

preserves the second invariant.
• The inner loop will eventually terminate because n − j is
decreased but is bounded from below.

• The outer loop will terminate because n − i is decreased
and is bounded from below.

• Liveness not a problem, because all transitions from
intermediate situations are mutually exhaustive

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Preserving the invariant

• We need to check that the second invariant is preserved
while making progress. We need to show that when j 6= n,
the statement

j := j + 1; if A[j] < A[k] then k := j fi

preserves the second invariant.
• The inner loop will eventually terminate because n − j is
decreased but is bounded from below.

• The outer loop will terminate because n − i is decreased
and is bounded from below.

• Liveness not a problem, because all transitions from
intermediate situations are mutually exhaustive

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Preserving the invariant

• We need to check that the second invariant is preserved
while making progress. We need to show that when j 6= n,
the statement

j := j + 1; if A[j] < A[k] then k := j fi

preserves the second invariant.
• The inner loop will eventually terminate because n − j is
decreased but is bounded from below.

• The outer loop will terminate because n − i is decreased
and is bounded from below.

• Liveness not a problem, because all transitions from
intermediate situations are mutually exhaustive

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Preserving the invariant

• We need to check that the second invariant is preserved
while making progress. We need to show that when j 6= n,
the statement

j := j + 1; if A[j] < A[k] then k := j fi

preserves the second invariant.
• The inner loop will eventually terminate because n − j is
decreased but is bounded from below.

• The outer loop will terminate because n − i is decreased
and is bounded from below.

• Liveness not a problem, because all transitions from
intermediate situations are mutually exhaustive

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Final program

• The final program developed above has been proved correct
• It can be automatically compiled into executable program
code, in any language

• Compiler does not need information about situations, only
transitions are needed in order to generate code

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Final program

• The final program developed above has been proved correct
• It can be automatically compiled into executable program
code, in any language

• Compiler does not need information about situations, only
transitions are needed in order to generate code

Invariant
Based Pro-
gramming

Ralph-Johan
Back

Programming
as
mathematics

Mathematics
of
programming
Situations
Programs
Correctness
Invariant
diagrams
Consistency
Termination
and liveness

Invariant
based
programming

Case study

Final program

• The final program developed above has been proved correct
• It can be automatically compiled into executable program
code, in any language

• Compiler does not need information about situations, only
transitions are needed in order to generate code

	Programming as mathematics
	Mathematics of programming
	Situations
	Programs
	Correctness
	Invariant diagrams
	Consistency
	Termination and liveness

	Invariant based programming
	Case study

