New trends in code generation:
Haskabelle and the Predicate Compiler

Florian Haftmann
joint work with Stefan Berghofer and Lukas Bulwahn
Technische Universitat Munchen

Workshop in Belgrade — Jan. 2010

Part one: Haskabelle

Haskabelle

e pragmatic translator from Haskell programs to Isabelle theories

Part one: Haskabelle 2/5

Haskabelle

e pragmatic translator from Haskell programs to Isabelle theories
e pragmatic: parsing Haskell to abstract syntax, printing Isabelle from

abstract syntax
e tries to translate things one-to-one as far as possible

Part one: Haskabelle 2/5

Haskabelle

e pragmatic translator from Haskell programs to Isabelle theories

e pragmatic: parsing Haskell to abstract syntax, printing Isabelle from
abstract syntax

e tries to translate things one-to-one as far as possible

e restrictions mainly due to restrictions of Isabelle:

— less expressive type system (e.g. no constructor classes)

— no local function bindings
— only provably terminating function definitions

Part one: Haskabelle 2/5

Haskabelle

e pragmatic translator from Haskell programs to Isabelle theories

e pragmatic: parsing Haskell to abstract syntax, printing Isabelle from
abstract syntax

e tries to translate things one-to-one as far as possible

e restrictions mainly due to restrictions of Isabelle:

— less expressive type system (e.g. no constructor classes)
— no local function bindings
— only provably terminating function definitions

e simple example: printing radix representations » EXAMPLE

Part one: Haskabelle 2/5

Haskabelle

e pragmatic translator from Haskell programs to Isabelle theories

e pragmatic: parsing Haskell to abstract syntax, printing Isabelle from
abstract syntax

e tries to translate things one-to-one as far as possible

e restrictions mainly due to restrictions of Isabelle:

— less expressive type system (e.g. no constructor classes)
— no local function bindings
— only provably terminating function definitions

e simple example: printing radix representations » EXAMPLE

e a realistic example: finite maps
— taken from http://hackage.haskell.org/cgi-bin/hackage-scr
package/FiniteMap-0.1
> EXAMPLE

Part one: Haskabelle 2/5

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/FiniteMap-0.1
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/FiniteMap-0.1

Excerpt from default/adapt.txt in the Haskabelle distribution:

classes

"Prelude.

types

"Prelude.
"Prelude.

"Prelude
"Prelude

consts

"Prelude.
.False"

"Prelude

"Prelude.

"Prelude

Part one: Haskabelle

qul

Bool"
PairTyCon"

.Maybe"

.String"
"Prelude.
"Prelude.

Int"
Integer"

True"

(&&)n

Adaptation

"Prelude.eq"

"bool"

n % n
"option"
"string"
n ll’lt n

n 1nt n

"True"
"False"
"op &"
"HOL.undefined"

3/5

Adaptation

Excerpt from default/adapt.txt in the Haskabelle distribution:

classes
"Prelude.EqQ" "Prelude.eq"

types
"Prelude.Bool" "bool"
"Prelude.PairTyCon" Mo
"Prelude.Maybe" "option"
"Prelude.String" "string"
"Prelude.Int" "int"
"Prelude.Integer" "int"

consts
"Prelude.True" "True"
"Prelude.False" "False"
"Prelude. (&&)" "op &"
"Prelude._|_" "HOL.undefined"

Purpose:

e provide counterparts for fundamental Haskell definitions

e reuse existing Isabelle definitions (proofs!)

Part one: Haskabelle 3/5

State of the art

What we have

e promising preliminary experiments with the selL4 operating system
kernel http://ertos.nicta.com.au/research/14.verified/

e used by secunet http://www.secunet.com/en/ “|IT security be-
yond expectations”

What we encourage

e give It a try
e extend Haskabelle to fit your needs

Part one: Haskabelle 4/5

http://ertos.nicta.com.au/research/l4.verified/
http://www.secunet.com/en/

Part two: Predicate Compiler

Executing Inductive Predicates
in a functional language

Executing Inductive Predicates
in a functional language

Inductive Predicates are everywhere

» Programming
language semantics

» Type systems
» Logical calculi

Executing Inductive Predicates
in a functional language

Inductive Predicates are everywhere

» Programming ~+ Interpreters
language semantics
» Type systems ~ Type checkers

» Logical calculi ~+ Inference mechanisms

Executing Inductive Predicates
in a functional language

Inductive Predicates are everywhere

» Programming _ ~~ Interpreters
language semantics
» Type systems ~+ Type checkers
» Logical calculi ~ Inference mechanisms

Important for Prototypes and Counterexample generation

Overview

[inductive predicates]

N
mode analysis
N\
compiler

N

proof procedure

[equational theorems]

N

code generator

(executable code)

Overview

[inductive predicates]

1 N\
i mode analysis |
| N |
1 compiler |
| ~ :
1 proof procedure
logical system [equational theorems] !
e x ,,,,,,,

code generator

N

[executable code]

Overview

[inductive predicates]

1 N
| mode analysis |
| N 3
1 compiler |
| N 3
1 proof procedure |
logical system [equational theorems] 1
N e trtrer42ree/0/—/—/—— \7 7777777 l

code generator

[executable code]

Inductive Predicates

Example: append

xs =] ys = zs

append Xs ys zs

xs = x- xs' append xs' ys zs' x- zs' = zs

append xs ys zs

Overview

[inductive predicates]

1 N
| mode analysis |
| N 3
1 compiler |
| N 3
1 proof procedure |
logical system [equational theorems] 1
N e trtrer42ree/0/—/—/—— \7 7777777 l

code generator

[executable code]

Inductive Predicates describe Relations.

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

» What is the concatenation of two given lists? (Mode {1, 2})

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

» What is the concatenation of two given lists? (Mode {1, 2})
append (1,20 XSys = {zs. append xs ys zs}

Inductive Predicates describe Relations.
Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

» What is the concatenation of two given lists? (Mode {1, 2})
append (1,20 XSys = {zs. append xs ys zs}

append{ 1,2} [aa b] [Cv d.l = { [37 b, c, Cﬂ }

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.
Example: append
» What is the concatenation of two given lists? (Mode {1, 2})
append (1,20 XSys = {zs. append xs ys zs}
appendy 4 o\ [a b] [c, d] = {[a b, c. d] }
» In which two lists can a given list be split? (Mode {3})

Inductive Predicates describe Relations.
Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.
Example: append
» What is the concatenation of two given lists? (Mode {1, 2})
append (1,20 XSys = {zs. append xs ys zs}
appendy 4 o\ [a b] [c, d] = {[a b, c. d] }

» In which two lists can a given list be split? (Mode {3})
append (3y 25 = {(xs, ys). append xs ys zs}

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

» What is the concatenation of two given lists? (Mode {1, 2})
append (1,20 XSys = {zs. append xs ys zs}
appendy 4 o\ [a b] [c, d] = {[a b, c. d] }
» In which two lists can a given list be split? (Mode {3})
append{ 3) zs = {(xs, ys). append xs ys zs}
append; s [a, b, ¢, d = {([l. [a, b. c. d)), ([g], [b. c. d]).....
-5 ([a b, c d,)}

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

» What is the concatenation of two given lists? (Mode {1, 2})
append (1,20 XSys = {zs. append xs ys zs}
appendy 4 o\ [a b] [c, d] = {[a b, c. d] }
» In which two lists can a given list be split? (Mode {3})
append{ 3) zs = {(xs, ys). append xs ys zs}
append; s [a, b, ¢, d = {([l. [a, b. c. d)), ([g], [b. c. d]).....
-5 ([a b, c d,)}

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

xs =] ys = zs

append Xs ys zs

xs = x- xs’ append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

xs =] ys = zs

append Xs ys zs

xs = x- xs’ append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

xs =] ys = zs

append Xs ys zs

xs = x- xs’ append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[

xs =] ys = zs

append Xs ys zs

xs = x- xs’ append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[

xs =] ys = zs

append Xs ys zs

Xs = x- xs’ append xs' ys zs' x. zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[]
xs =] ys = zs
append Xs ys zs
[1 1
Xs = x- xs' append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[]
xs =] ys = zs
append Xs ys zs
[1 1
Xs = x- xs' append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[

xs =] ys = zs

append Xs ys zs

Xs = x- xs' append xs' ys zs' x- zs' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[

xs =] ys = zs

append Xs ys zs

Xs = x- xs' append xs' ys zs' x- z8' = zs

append Xs ys zs

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.
Example: append for mode {1, 2}

[

xs =] ys = zs

append Xs ys zs

— [[

Xs = x- xs' append xs' ys zs' x- zs' = zs

append Xs ys zs

Overview

[inductive predicates]

1 N
| mode analysis |
| N\ 3
1 compiler |
| N 3
1 proof procedure |
logical system [equational theorems] 1
N e trtrer42ree/0/—/—/—— \7 7777777 l

code generator

[executable code]

Compilation of code equations

Basic set operations

» empty set: ()

» singleton set: {x}

» union operation: AU B
» bind operation: S »= f

Compilation of code equations

Basic set operations

» empty set: ()
» singleton set: {x}
» union operation: AU B

» bind operation: S »= f
(»=) :: a set= (a = [set) = (3 set

Compilation of code equations

Basic set operations

» empty set: ()
» singleton set: {x}
» union operation: AU B

» bind operation: S »= f
(»=) raset= (a= [set) = [set
applying function f:: a = (3 set
to all elements of S :: « set and merging the results, i.e. [Jf*S

Compilation of code equations

Recall J 1
xs =] ys = zs
append xs ys zs
1 1 [[
xXs = x- xs' append xs' ys zs' x- zs' = zs

append xs ys zs

Compilation of code equations

Recall N 1

xs =] ys = zs

append xs ys zs

[[

xXs = x- xs' append xs' ys zs' x- zs' = zs

append xs ys zs

Code equation of append

append (1,2 XS ys =
(case xs of [| = {ys} | x-xs’ =0)
U (case xsof [| = 0 | x-xs' = append{1 21 xs' ys »= (A\zs'.

{xzs"}))

Overview

[inductive predicates]

1 N
| mode analysis |
| N 3
1 compiler |
| N 3
1 proof procedure |
logical system [equational theorems] 1
N e trtrer42ree/0/—/—/—— \7 7777777 l

code generator

[executable code]

Correctness Proof of Construction

Definition:
append (1,20 XSys= {zs. append xs ys zs}

Correctness Proof of Construction

Definition:
append (1,20 XSys= {zs. append xs ys zs}

Lemma:
append (1,2 XS ys =
(case xs of [| = {ys} | x-xs' =0)
U (casexsof [| = 0 | x-xs’' = append{1 21 xs' ys »= (A\zs'.

{x2zs}))

Correctness Proof of Construction

Definition:
append (1,20 XSys= {zs. append xs ys zs}

Lemma:
append (1,2 XS ys =
(case xs of [| = {ys} | x-xs' =0)
U (casexsof [| = 0 | x-xs’' = append{1 21 xs' ys »= (A\zs'.

{x2zs}))

Highlights of the proof procedure:
» Functions are correct by definition.

Correctness Proof of Construction

Definition:
append (1,20 XSys= {zs. append xs ys zs}

Lemma:
append (1,2 XS ys =
(case xs of [| = {ys} | x-xs' =0)
U (casexsof [| = 0 | x-xs’' = append{1 21 xs' ys »= (A\zs'.

{x2zs}))

Highlights of the proof procedure:
» Functions are correct by definition.

» No induction, only introduction and elimination rules of the
inductive predicate.

Correctness Proof of Construction

Definition:
append (1,20 XSys= {zs. append xs ys zs}

Lemma:
append (1,2 XS ys =
(case xs of [| = {ys} | x-xs' =0)
U (casexsof [| = 0 | x-xs’' = append{1 21 xs' ys »= (A\zs'.

{x2zs}))

Highlights of the proof procedure:
» Functions are correct by definition.

» No induction, only introduction and elimination rules of the
inductive predicate.

» No termination proof for recursive functions

Correctness Proof of Construction

Definition:
append (1,20 XSys= {zs. append xs ys zs}

Lemma:
append (1,2 XS ys =
(case xs of [| = {ys} | x-xs' =0)
U (casexsof [| = 0 | x-xs’' = append{1 21 xs' ys »= (A\zs'.

{x2zs}))

Highlights of the proof procedure:
» Functions are correct by definition.

» No induction, only introduction and elimination rules of the
inductive predicate.

» No termination proof for recursive functions
» No interdependence of mutually recursive functions

Overview

[inductive predicates]

1 N
| mode analysis |
| N 3
1 compiler |
| N 3
1 proof procedure |
logical system [equational theorems] 1
N e trtrer42ree/0/—/—/—— \7 7777777 l

code generator

[executable code]

Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:

Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:

» executable, i.e. only uses executable functions
(no choice-operator)

Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:

» executable, i.e. only uses executable functions
(no choice-operator)

» lazy evaluation in eager language, i.e. use explicit closures to
delay computation

Lazy-Evaluation Model of Sets

Representation for Sets
datatype o seq = Empty | Insert o (« set) | Union (« set list)

Lazy-Evaluation Model of Sets

Representation for Sets
datatype o seq = Empty | Insert o (« set) | Union (« set list)

Seq :: (unit= « seq) = « set

Lazy-Evaluation Model of Sets

Representation for Sets
datatype o seq = Empty | Insert o (« set) | Union (« set list)
Seq :: (unit= « seq) = « set
Seq f= (case f() of
Empty = 0 | Insert x xq = {x} U xq | Union xgs = |J xqs)

Lazy-Evaluation Model of Sets

Representation for Sets
datatype o seq = Empty | Insert o (« set) | Union (« set list)

Seq :: (unit= « seq) = « set
Seq f= (case f() of
Empty = 0 | Insert x xq = {x} U xq | Union xgs = |J xqs)

Mapping to Standard ML
Empty :: o seq

Insert:: o = «a set = « seq
Union :: o set list = o seq
Seq :: (unit= « seq) = « set

Lazy-Evaluation Model of Sets

Representation for Sets
datatype o seq = Empty | Insert o (« set) | Union (« set list)

Seq :: (unit= « seq) = « set
Seq f= (case f() of
Empty = 0 | Insert x xq = {x} U xq | Union xgs = |J xqs)

Mapping to Standard ML
Empty :: o seq

Insert:: o = «a set = « seq
Union :: o set list = o seq
Seq :: (unit= « seq) = « set

are chosen to be uninterpreted in SML:

datatype ’a seq = Empty | Insert of ’a * ’a set | Union of ’a set list

and ’a set = Seq of (unit -> ’a seq);

Executable Equations of Set Operations

We derive executable equations for the four set operations:

Executable Equations of Set Operations

We derive executable equations for the four set operations:
) = Seq (\u. Empty)
{x} = Seq (\u. Insert x 1)

Executable Equations of Set Operations

We derive executable equations for the four set operations:
) = Seq (\u. Empty)
{x} = Seq (\u. Insert x 1)

Seqg »=f=
Seq (\u. case g () of Empty = Empty
| Insert x xq = Union [f x, xq »= f]
| Union xgs = Union (map (A\x. x »= f) Xxqs))

Executable Equations of Set Operations

We derive executable equations for the four set operations:
) = Seq (\u. Empty)
{x} = Seq (\u. Insert x 1)

Seqg »=f=
Seq (\u. case g () of Empty = Empty
| Insert x xq = Union [f x, xq »= f]
| Union xgs = Union (map (A\x. x »= f) Xxqs))

Seqfu Seqg =
Seq (\u. case f() of Empty = g ()
| Insert x xq = Insert x (xq U Seq 9)
| Union xqs = Union (xgs @ [Seq g]))

Executable Equations of Set Operations

We derive executable equations for the four set operations:
) = Seq (\u. Empty)
{x} = Seq (\u. Insert x 1)

Seqg »=f=
Seq (\u. case g () of Empty = Empty
| Insert x xq = Union [f x, xq »= f]
| Union xgs = Union (map (A\x. x »= f) Xxqs))

Seqfu Seqg =
Seq (\u. case f() of Empty = g ()
| Insert x xq = Insert x (xq U Seq 9)
| Union xqs = Union (xgs @ [Seq g]))

Note: All equations are guarded by Seq (\u. ...)!

Overview

[inductive predicates]

1 N
| mode analysis |
| N 3
1 compiler |
| N 3
1 proof procedure |
logical system [equational theorems] 1
N e trtrer42ree/0/—/—/—— \7 7777777 l

code generator

[executable code]

