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• pragmatic translator from Haskell programs to Isabelle theories

• pragmatic: parsing Haskell to abstract syntax, printing Isabelle from

abstract syntax

• tries to translate things one-to-one as far as possible

• restrictions mainly due to restrictions of Isabelle:

– less expressive type system (e.g. no constructor classes)

– no local function bindings

– only provably terminating function definitions

• simple example: printing radix representations I example

• a realistic example: finite maps

– taken from http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/FiniteMap-0.1
I example
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Adaptation

Excerpt from default/adapt.txt in the Haskabelle distribution:

classes
"Prelude.Eq" "Prelude.eq"

types
"Prelude.Bool" "bool"
"Prelude.PairTyCon" "*"
"Prelude.Maybe" "option"
"Prelude.String" "string"
"Prelude.Int" "int"
"Prelude.Integer" "int"

consts
"Prelude.True" "True"
"Prelude.False" "False"
"Prelude.(&&)" "op &"
"Prelude._|_" "HOL.undefined"
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"Prelude.Maybe" "option"
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consts
"Prelude.True" "True"
"Prelude.False" "False"
"Prelude.(&&)" "op &"
"Prelude._|_" "HOL.undefined"

Purpose:

• provide counterparts for fundamental Haskell definitions

• reuse existing Isabelle definitions (proofs!)
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State of the art

What we have

• promising preliminary experiments with the seL4 operating system

kernel http://ertos.nicta.com.au/research/l4.verified/

• used by secunet http://www.secunet.com/en/ “IT security be-

yond expectations”

What we encourage

• give it a try

• extend Haskabelle to fit your needs
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Inductive Predicates

Example: append

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs
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Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}
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Compilation of code equations

Basic set operations

I empty set: ∅
I singleton set: {x}
I union operation: A ∪ B
I bind operation: S »= f

(»=) :: α set⇒ (α⇒ β set)⇒ β set
applying function f :: α⇒ β set
to all elements of S :: α set and merging the results, i.e.

⋃
f ‘ S
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Compilation of code equations

Recall
xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Code equation of append

append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))
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Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.
I No induction, only introduction and elimination rules of the

inductive predicate.
I No termination proof for recursive functions
I No interdependence of mutually recursive functions
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Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:

I executable, i.e. only uses executable functions
(no choice-operator)

I lazy evaluation in eager language, i.e. use explicit closures to
delay computation
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Lazy-Evaluation Model of Sets

Representation for Sets
datatype α seq = Empty | Insert α (α set) | Union (α set list)

Seq :: (unit⇒ α seq)⇒ α set
Seq f = (case f () of

Empty⇒ ∅ | Insert x xq⇒ {x} ∪ xq | Union xqs⇒
⋃

xqs)

Mapping to Standard ML
Empty :: α seq
Insert :: α⇒ α set⇒ α seq
Union :: α set list⇒ α seq
Seq :: (unit⇒ α seq)⇒ α set

are chosen to be uninterpreted in SML:
datatype 'a seq = Empty | Insert of 'a * 'a set | Union of 'a set list

and 'a set = Seq of (unit -> 'a seq);
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Executable Equations of Set Operations

We derive executable equations for the four set operations:

∅ = Seq (λu. Empty)

{x} = Seq (λu. Insert x ∅)

Seq g »= f =
Seq (λu. case g () of Empty⇒ Empty

| Insert x xq⇒ Union [f x, xq »= f]
| Union xqs⇒ Union (map (λx. x »= f) xqs))

Seq f ∪ Seq g =
Seq (λu. case f () of Empty⇒ g ()

| Insert x xq⇒ Insert x (xq ∪ Seq g)
| Union xqs⇒ Union (xqs @ [Seq g]))

Note: All equations are guarded by Seq (λu. . . . )!
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