
New trends in code generation:
Haskabelle and the Predicate Compiler

λ →

∀
=Is

ab
el
le

β
α

HOL

Florian Haftmann

joint work with Stefan Berghofer and Lukas Bulwahn

Technische Universität München

Workshop in Belgrade – Jan. 2010

Part one: Haskabelle

Haskabelle

• pragmatic translator from Haskell programs to Isabelle theories

Part one: Haskabelle 2 / 5

Haskabelle

• pragmatic translator from Haskell programs to Isabelle theories

• pragmatic: parsing Haskell to abstract syntax, printing Isabelle from

abstract syntax

• tries to translate things one-to-one as far as possible

Part one: Haskabelle 2 / 5

Haskabelle

• pragmatic translator from Haskell programs to Isabelle theories

• pragmatic: parsing Haskell to abstract syntax, printing Isabelle from

abstract syntax

• tries to translate things one-to-one as far as possible

• restrictions mainly due to restrictions of Isabelle:

– less expressive type system (e.g. no constructor classes)

– no local function bindings

– only provably terminating function definitions

Part one: Haskabelle 2 / 5

Haskabelle

• pragmatic translator from Haskell programs to Isabelle theories

• pragmatic: parsing Haskell to abstract syntax, printing Isabelle from

abstract syntax

• tries to translate things one-to-one as far as possible

• restrictions mainly due to restrictions of Isabelle:

– less expressive type system (e.g. no constructor classes)

– no local function bindings

– only provably terminating function definitions

• simple example: printing radix representations I example

Part one: Haskabelle 2 / 5

Haskabelle

• pragmatic translator from Haskell programs to Isabelle theories

• pragmatic: parsing Haskell to abstract syntax, printing Isabelle from

abstract syntax

• tries to translate things one-to-one as far as possible

• restrictions mainly due to restrictions of Isabelle:

– less expressive type system (e.g. no constructor classes)

– no local function bindings

– only provably terminating function definitions

• simple example: printing radix representations I example

• a realistic example: finite maps

– taken from http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/FiniteMap-0.1
I example

Part one: Haskabelle 2 / 5

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/FiniteMap-0.1
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/FiniteMap-0.1

Adaptation

Excerpt from default/adapt.txt in the Haskabelle distribution:

classes
"Prelude.Eq" "Prelude.eq"

types
"Prelude.Bool" "bool"
"Prelude.PairTyCon" "*"
"Prelude.Maybe" "option"
"Prelude.String" "string"
"Prelude.Int" "int"
"Prelude.Integer" "int"

consts
"Prelude.True" "True"
"Prelude.False" "False"
"Prelude.(&&)" "op &"
"Prelude._|_" "HOL.undefined"

Part one: Haskabelle 3 / 5

Adaptation

Excerpt from default/adapt.txt in the Haskabelle distribution:

classes
"Prelude.Eq" "Prelude.eq"

types
"Prelude.Bool" "bool"
"Prelude.PairTyCon" "*"
"Prelude.Maybe" "option"
"Prelude.String" "string"
"Prelude.Int" "int"
"Prelude.Integer" "int"

consts
"Prelude.True" "True"
"Prelude.False" "False"
"Prelude.(&&)" "op &"
"Prelude._|_" "HOL.undefined"

Purpose:

• provide counterparts for fundamental Haskell definitions

• reuse existing Isabelle definitions (proofs!)
Part one: Haskabelle 3 / 5

State of the art

What we have

• promising preliminary experiments with the seL4 operating system

kernel http://ertos.nicta.com.au/research/l4.verified/

• used by secunet http://www.secunet.com/en/ “IT security be-

yond expectations”

What we encourage

• give it a try

• extend Haskabelle to fit your needs

Part one: Haskabelle 4 / 5

http://ertos.nicta.com.au/research/l4.verified/
http://www.secunet.com/en/

Part two: Predicate Compiler

Motivation

Executing Inductive Predicates

in a functional language

Inductive Predicates are everywhere

I Programming
language semantics

I Type systems

I Logical calculi

Important for Prototypes and Counterexample generation

Motivation

Executing Inductive Predicates

in a functional language

Inductive Predicates are everywhere

I Programming
language semantics

I Type systems

I Logical calculi

Important for Prototypes and Counterexample generation

Motivation

Executing Inductive Predicates

in a functional language

Inductive Predicates are everywhere

I Programming
language semantics

 Interpreters

I Type systems Type checkers

I Logical calculi Inference mechanisms

Important for Prototypes and Counterexample generation

Motivation

Executing Inductive Predicates

in a functional language

Inductive Predicates are everywhere

I Programming
language semantics

 Interpreters

I Type systems Type checkers

I Logical calculi Inference mechanisms

Important for Prototypes and Counterexample generation

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

Inductive Predicates

Example: append

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.

A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})

append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}

append{1,2} [a, b] [c, d] = { [a, b, c, d] }
I In which two lists can a given list be split? (Mode {3})

append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})

append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}

append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Modes

Inductive Predicates describe Relations.

Inductive Predicates describe Functions which return Sets of solutions.
A Mode describes a way of querying an Inductive Predicate.

Example: append

I What is the concatenation of two given lists? (Mode {1, 2})
append{1,2} xs ys = {zs. append xs ys zs}
append{1,2} [a, b] [c, d] = { [a, b, c, d] }

I In which two lists can a given list be split? (Mode {3})
append{3} zs = {(xs, ys). append xs ys zs}
append{3} [a, b, c, d] = {([], [a, b, c, d]), ([a], [b, c, d]),. . .

. . . , ([a, b, c, d], [])}

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Mode Analysis

A mode requires a dataflow of ground values in the introduction rules.

Example: append for mode {1, 2}

xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

Compilation of code equations

Basic set operations

I empty set: ∅
I singleton set: {x}
I union operation: A ∪ B
I bind operation: S »= f

(»=) :: α set⇒ (α⇒ β set)⇒ β set
applying function f :: α⇒ β set
to all elements of S :: α set and merging the results, i.e.

⋃
f ‘ S

Compilation of code equations

Basic set operations

I empty set: ∅
I singleton set: {x}
I union operation: A ∪ B
I bind operation: S »= f

(»=) :: α set⇒ (α⇒ β set)⇒ β set

applying function f :: α⇒ β set
to all elements of S :: α set and merging the results, i.e.

⋃
f ‘ S

Compilation of code equations

Basic set operations

I empty set: ∅
I singleton set: {x}
I union operation: A ∪ B
I bind operation: S »= f

(»=) :: α set⇒ (α⇒ β set)⇒ β set
applying function f :: α⇒ β set
to all elements of S :: α set and merging the results, i.e.

⋃
f ‘ S

Compilation of code equations

Recall
xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Code equation of append

append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Compilation of code equations

Recall
xs = [] ys = zs

append xs ys zs

xs = x · xs ′ append xs ′ ys zs ′ x · zs ′ = zs

append xs ys zs

√

Code equation of append

append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.
I No induction, only introduction and elimination rules of the

inductive predicate.
I No termination proof for recursive functions
I No interdependence of mutually recursive functions

Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.
I No induction, only introduction and elimination rules of the

inductive predicate.
I No termination proof for recursive functions
I No interdependence of mutually recursive functions

Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.

I No induction, only introduction and elimination rules of the
inductive predicate.

I No termination proof for recursive functions
I No interdependence of mutually recursive functions

Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.
I No induction, only introduction and elimination rules of the

inductive predicate.

I No termination proof for recursive functions
I No interdependence of mutually recursive functions

Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.
I No induction, only introduction and elimination rules of the

inductive predicate.
I No termination proof for recursive functions

I No interdependence of mutually recursive functions

Correctness Proof of Construction

Definition:
append{1, 2} xs ys = {zs. append xs ys zs}

Lemma:
append{1, 2} xs ys =

(case xs of []⇒ {ys} | x·xs ′⇒∅)
∪ (case xs of []⇒ ∅ | x·xs ′⇒ append{1, 2} xs ′ ys »= (λzs ′.

{x·zs ′}))

Highlights of the proof procedure:
I Functions are correct by definition.
I No induction, only introduction and elimination rules of the

inductive predicate.
I No termination proof for recursive functions
I No interdependence of mutually recursive functions

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:

I executable, i.e. only uses executable functions
(no choice-operator)

I lazy evaluation in eager language, i.e. use explicit closures to
delay computation

Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:
I executable, i.e. only uses executable functions

(no choice-operator)

I lazy evaluation in eager language, i.e. use explicit closures to
delay computation

Lazy-Evaluation Model of Sets

We develop a model for sets with two properties:
I executable, i.e. only uses executable functions

(no choice-operator)
I lazy evaluation in eager language, i.e. use explicit closures to

delay computation

Lazy-Evaluation Model of Sets

Representation for Sets
datatype α seq = Empty | Insert α (α set) | Union (α set list)

Seq :: (unit⇒ α seq)⇒ α set
Seq f = (case f () of

Empty⇒ ∅ | Insert x xq⇒ {x} ∪ xq | Union xqs⇒
⋃

xqs)

Mapping to Standard ML
Empty :: α seq
Insert :: α⇒ α set⇒ α seq
Union :: α set list⇒ α seq
Seq :: (unit⇒ α seq)⇒ α set

are chosen to be uninterpreted in SML:
datatype 'a seq = Empty | Insert of 'a * 'a set | Union of 'a set list

and 'a set = Seq of (unit -> 'a seq);

Lazy-Evaluation Model of Sets

Representation for Sets
datatype α seq = Empty | Insert α (α set) | Union (α set list)

Seq :: (unit⇒ α seq)⇒ α set

Seq f = (case f () of
Empty⇒ ∅ | Insert x xq⇒ {x} ∪ xq | Union xqs⇒

⋃
xqs)

Mapping to Standard ML
Empty :: α seq
Insert :: α⇒ α set⇒ α seq
Union :: α set list⇒ α seq
Seq :: (unit⇒ α seq)⇒ α set

are chosen to be uninterpreted in SML:
datatype 'a seq = Empty | Insert of 'a * 'a set | Union of 'a set list

and 'a set = Seq of (unit -> 'a seq);

Lazy-Evaluation Model of Sets

Representation for Sets
datatype α seq = Empty | Insert α (α set) | Union (α set list)

Seq :: (unit⇒ α seq)⇒ α set
Seq f = (case f () of

Empty⇒ ∅ | Insert x xq⇒ {x} ∪ xq | Union xqs⇒
⋃

xqs)

Mapping to Standard ML
Empty :: α seq
Insert :: α⇒ α set⇒ α seq
Union :: α set list⇒ α seq
Seq :: (unit⇒ α seq)⇒ α set

are chosen to be uninterpreted in SML:
datatype 'a seq = Empty | Insert of 'a * 'a set | Union of 'a set list

and 'a set = Seq of (unit -> 'a seq);

Lazy-Evaluation Model of Sets

Representation for Sets
datatype α seq = Empty | Insert α (α set) | Union (α set list)

Seq :: (unit⇒ α seq)⇒ α set
Seq f = (case f () of

Empty⇒ ∅ | Insert x xq⇒ {x} ∪ xq | Union xqs⇒
⋃

xqs)

Mapping to Standard ML
Empty :: α seq
Insert :: α⇒ α set⇒ α seq
Union :: α set list⇒ α seq
Seq :: (unit⇒ α seq)⇒ α set

are chosen to be uninterpreted in SML:
datatype 'a seq = Empty | Insert of 'a * 'a set | Union of 'a set list

and 'a set = Seq of (unit -> 'a seq);

Lazy-Evaluation Model of Sets

Representation for Sets
datatype α seq = Empty | Insert α (α set) | Union (α set list)

Seq :: (unit⇒ α seq)⇒ α set
Seq f = (case f () of

Empty⇒ ∅ | Insert x xq⇒ {x} ∪ xq | Union xqs⇒
⋃

xqs)

Mapping to Standard ML
Empty :: α seq
Insert :: α⇒ α set⇒ α seq
Union :: α set list⇒ α seq
Seq :: (unit⇒ α seq)⇒ α set

are chosen to be uninterpreted in SML:
datatype 'a seq = Empty | Insert of 'a * 'a set | Union of 'a set list

and 'a set = Seq of (unit -> 'a seq);

Executable Equations of Set Operations

We derive executable equations for the four set operations:

∅ = Seq (λu. Empty)

{x} = Seq (λu. Insert x ∅)

Seq g »= f =
Seq (λu. case g () of Empty⇒ Empty

| Insert x xq⇒ Union [f x, xq »= f]
| Union xqs⇒ Union (map (λx. x »= f) xqs))

Seq f ∪ Seq g =
Seq (λu. case f () of Empty⇒ g ()

| Insert x xq⇒ Insert x (xq ∪ Seq g)
| Union xqs⇒ Union (xqs @ [Seq g]))

Note: All equations are guarded by Seq (λu. . . .)!

Executable Equations of Set Operations

We derive executable equations for the four set operations:

∅ = Seq (λu. Empty)

{x} = Seq (λu. Insert x ∅)

Seq g »= f =
Seq (λu. case g () of Empty⇒ Empty

| Insert x xq⇒ Union [f x, xq »= f]
| Union xqs⇒ Union (map (λx. x »= f) xqs))

Seq f ∪ Seq g =
Seq (λu. case f () of Empty⇒ g ()

| Insert x xq⇒ Insert x (xq ∪ Seq g)
| Union xqs⇒ Union (xqs @ [Seq g]))

Note: All equations are guarded by Seq (λu. . . .)!

Executable Equations of Set Operations

We derive executable equations for the four set operations:

∅ = Seq (λu. Empty)

{x} = Seq (λu. Insert x ∅)

Seq g »= f =
Seq (λu. case g () of Empty⇒ Empty

| Insert x xq⇒ Union [f x, xq »= f]
| Union xqs⇒ Union (map (λx. x »= f) xqs))

Seq f ∪ Seq g =
Seq (λu. case f () of Empty⇒ g ()

| Insert x xq⇒ Insert x (xq ∪ Seq g)
| Union xqs⇒ Union (xqs @ [Seq g]))

Note: All equations are guarded by Seq (λu. . . .)!

Executable Equations of Set Operations

We derive executable equations for the four set operations:

∅ = Seq (λu. Empty)

{x} = Seq (λu. Insert x ∅)

Seq g »= f =
Seq (λu. case g () of Empty⇒ Empty

| Insert x xq⇒ Union [f x, xq »= f]
| Union xqs⇒ Union (map (λx. x »= f) xqs))

Seq f ∪ Seq g =
Seq (λu. case f () of Empty⇒ g ()

| Insert x xq⇒ Insert x (xq ∪ Seq g)
| Union xqs⇒ Union (xqs @ [Seq g]))

Note: All equations are guarded by Seq (λu. . . .)!

Executable Equations of Set Operations

We derive executable equations for the four set operations:

∅ = Seq (λu. Empty)

{x} = Seq (λu. Insert x ∅)

Seq g »= f =
Seq (λu. case g () of Empty⇒ Empty

| Insert x xq⇒ Union [f x, xq »= f]
| Union xqs⇒ Union (map (λx. x »= f) xqs))

Seq f ∪ Seq g =
Seq (λu. case f () of Empty⇒ g ()

| Insert x xq⇒ Insert x (xq ∪ Seq g)
| Union xqs⇒ Union (xqs @ [Seq g]))

Note: All equations are guarded by Seq (λu. . . .)!

Overview

inductive predicates

mode analysis

compiler

proof procedure

equational theorems

code generator

executable code

logical system

