
Intuitionistically Proving Markov’s principle Thanks to Delimited
control

Hugo Herbelin

30 January 2010

3rd workshop on formal and automated theorem proving and applications - COST IC0901

1

The Curry-Howard proofs-as-programs correspondence

Hilbert’s style logic = simply-typed combinatory logic (Curry [1958])
natural deduction = simply-typed λ-calculus (Howard [1969])
classical logic = control operators (Griffin [1990], Parigot [1992])
sequent calculus = terms/evaluation contexts + call-by-name/call-by-value duality
Markov’s principle = ?

2

Markov’s principle

¬¬∃xA(x)→ ∃xA(x) for A(x) decidable

- classically provable

- not provable in (standard) intuitionistic logic (no simply-typed realiser, Kreisel [1958])

- asserts that classical logic is conservative over intuitionistic logic for ∃xA(x) statements (A(x)

decidable)

- useful for program extraction in constructive analysis (implies ¬x = y → x#y on real numbers)

↪→ conventional realiser is unbounded search, testing A(0), A(1), ... until finding some A(n0)

that holds

- admissible as a rule (Friedman’s A-translation [1978])

↪→ Friedman’s result applies to any formula intuitionistically equivalent to an →-∀-formula

From now on, we implicitly assume that A is →-free in ∃xA(x) and we place ourselves in
predicate logic

3

Main result

Intuitionistic logic + classical reasoning limited to ∃xA(x) formulae

- still satisfies the characteristic disjunction and existence properties of intuitionistic logic

` A ∨B implies ` A or ` B
` ∃xA(x) implies ` A(t) for some t

- proves Markov’s principle and there are two possible proof-terms with standard computational
contents

λH. callcc(λk.H (λx.throw k x))

λH. tryEH(λx.raiseE x)

where H : ¬¬∃x A(x)

4

IQCMP annotated with proof-terms

(a : A) ∈ Γ

Γ `∆ a : A Γ `∆ () : >
Γ `∆ p : ⊥

Γ `∆ efq p : C

Γ `∆ p1 : A1 Γ `∆ p2 : A2

Γ `∆ (p1, p2) : A1 ∧ A2

Γ `∆ p : A1 ∧ A2

Γ `∆ πi p : Ai

Γ `∆ p : Ai

Γ `∆ ιi(p) : A1 ∨ A2

Γ `∆ p : A1 ∨ A2 Γ, a1 : A1 `∆ p1 : B Γ, a2 : A2 `∆ p2 : B

Γ `∆ case p of [a1.p1 | a2.p2] : B

Γ, a : A `∆ p : B

Γ `∆ λa.p : A→ B

Γ `∆ p : A→ B Γ `∆ q : A

Γ `∆ p q : B

Γ `∆ p : A(x) x fresh

Γ `∆ λx.p : ∀xA(x)

Γ `∆ p : ∀xA(x)

Γ `∆ p t : A(t)

Γ `∆ p : A(t)

Γ `∆ (t, p) : ∃xA(x)

Γ `∆ p : ∃xA(x) Γ, a : A(x) `∆ q : B x fresh

Γ `∆ dest p as (x, a) in q : B

Γ `α:∃xA(x),∆ p : ∃xA(x)

Γ `∆ catchα p : ∃xA(x)

Γ `∆ p : ∃xA(x) (α : ∃xA(x)) ∈ ∆

Γ `∆ throwα p : C

5

First observation

Completeness Γ ` A in IQCMP iff MP ,Γ ` A in IQC.

6

Normalisation rules for IQCMP : a call-by-value semantics

V ::= a | ιi(V) | (V, V) | (t, V) | λa.p | λx.p | ()
F [] ::= case [] of [a1.p1 | a2.p2] | πi([]) | dest [] as (x, a) in p

| [] q | (λx.q) [] | [] t | efq [] | throwα [] | ιi([]) | ([], p) | (V, []) | (t, [])

(λa.p)V → p[V/a]

(λx.p) t → p[t/x]

case ιi(V) of [a1.p1 | a2.p2] → pi[V/ai]

dest (t, V) as (x, a) in p → p[t/x][V/a]

πi(V1, V2) → Vi
F [efq p] → efq p
F [throwαp] → throwαp

catchαthrowαp → catchαp
catchαthrowβV → throwβ V (α 6= β)

catchαV → V

∃xA(x) formulae for A →-free are “datatypes”... call-by-value ensures that any closed proof of
such a formula reduces to value and that any “throw” initially present in the proof has been
raised

7

Properties of the reduction system

The resulting reduction system is rich enough to ensure the normalisation of closed proofs

Subject reduction If Γ ` p : A; ∆ and p→ q then Γ ` q : A; ∆

Progress If ` p : A; ∆ and p is not a (closed) value then p is reducible

Normalisation If ` p : A; ∆ then p is normalisable (by either monadic-style interpretation or
embedding in classical logic)

Existence property ` ∃xA(x) implies ` A(t) for some t

Disjunction property ` A1 ∨ A2 implies ` A1 or ` A2

8

How it works

The general form of a closed proof of ¬¬∃xB(x) is

λk.k (t1, . . . (k (t2, . . . (k (tn, V)) . . .)) . . .)

Applying Markov’s principle gives

catchα efq throwα (t1, . . . (throwα (t2, . . . (throwα (tn, V)) . . .)) . . .)

and the evaluation strategy forces the evaluation to

(tn, V)

9

Connection with Friedman’s A-translation

Friedman proved that the following variant of Markov’s rule for predicate logic is intuitionistically
admissible for A a →-free propositional formula:

` ¬¬∃xA(x)

` ∃xA(x)

The trick is to observe that any proof of Γ ` B that uses ⊥-elimination can be mapped to a
⊥-free proof of ΓA ` BA where the A-translation of B, written BA, is defined compositionally
except for ⊥ and atoms:

⊥A , A

XA , X ∨ A

In a second step one observes that if B is ∀-→-free, then BA → B ∨ A and hence BB → B.
But then, if A is ∃xB(x), from a proof of ` ¬¬A, one gets a proof of ` (AA → A) → A,
hence a proof of ` A.

10

Direct-style vs monadic transformation

intuitionism + effect T−−−−−→ pure intuitionism

control operators T (B) , ¬¬B
states T (B) , S → B ∧ S
exceptions T (B) , B ∨ exn
??? Friedman’s A-translation of B

11

Friedman’s A-translation modified as a generalised exception monad
transformation

>∆ , >
⊥∆ , ⊥
P (~t)∆ , P (~t)

(B ∧ C)∆ , B∆ ∧ C∆

(B ∨ C)∆ , B∆ ∨ C∆

(∃xB(x))∆ , ∃xB(x)∆

(∀xB(x))∆ , ∀x (B(x)∆ ∨
∨

∆)

(B → C)∆ , (∀X B∆,X)→ (C∆ ∨
∨

∆)

Theorem Γ `∆ A in IQCMP implies Γ∅ ` A∆ in IQC2

12

About delimited control

Felleisen’s # operators [1988] and Danvy and Filinski’s 〈 〉 operator [1989] delimit the extent of
the evaluation context captured by control operators.

Delimiters also block the interaction between a control operator and its surrounding context.

This is what is implicitly used in IQCMP : the interaction of catch with its context is blocked
so to ensure that the “exception” types in ∆ remain “datatypes”.

13

Replacing catch/throw by try/raise

Rules are apparently the same...

(λa.p)V → p[V/a]

(λx.p) t → p[t/x]

case ιi(V) of [a1.p1 | a2.p2] → pi[V/ai]

dest (t, V) as (x, a) in p → p[t/x][V/a]

πi(V1, V2) → Vi
F [raiseE p] → raiseE p

tryE raiseE p → tryE p

tryE raiseE′ V → raiseE′ V (E 6= E ′)

tryE V → V

... except that substitution p[V/a] is no longer capture-free (no α-conversion on exception
names).

Subject reduction, progress, normalisation, disjunction property and existence property still hold.

14

catch/throw vs try/raise

For the catch/throw mechanism, bindings are static (α-conversion is used to avoid capture)

For the try/raise mechanism, bindings are dynamic (no α-conversion)

Example:

H1 : ∃x> , (x1, p)

H2 : ∃x> , (x2, p)

H2 : ∃x> → ∃x> , λa.H2

G : (((∃x> → ∃x>)→ ∃x>)→ ∃x>)→ ∃x> , λF.F (λa.H ′2(Fλa′.aH1))

F1 : ((∃x> → ∃x>)→ ∃x>)→ ∃x> , λf.catchαf (λc.throwαc)

F2 : ((∃x> → ∃x>)→ ∃x>)→ ∃x> , λf.tryEf (λc.throwEc)

Then, letting Jq , λc.throwqc:

GF1 → catchα((λa.H ′2(catchα((λa′.aH1)Jα)))Jα)

= catchα((λa.H ′2(catchβ((λa′.aH1)Jβ)))Jα)

→ catchα(H ′2(catchβthrowαH1))

→ H1

while GF2 → tryE((λa.H ′2(tryE((λa′.aH1)JE)))JE)

→ tryE(H ′2(tryEthrowEH1))

→ H2

15

Summary

We gave an evidence that Markov’s principle is undoubtedly constructive and that it has a more
clever computational content than just unbounded search.

We are making formal the intuitive connection between Friedman’s A-translation and the excep-
tion monad transformation.

We are showing that when it turns to ∃xA(x) formulae, both callcc-style control and try-style
exception handling are correct realisers (even though they do not have the same computational
content).

Arithmetic case to be done formally.

Connections exist with the codereliction rule of differential interaction nets.

Which notion of realisability would capture the expressiveness of IQCMP?

16

