
Using SMT solvers to prove Spark VCs:
Implications for the Rich Model Language

Paul Jackson

University of Edinburgh

IC0901 WG1&WG2 Meeting and FATPA Workshop
Belgrade

29th January 2010



Context

I Spark
I Ada subset: no heap, no recursion, no aliasing
I Used in high-integrity applications (e.g. aerospace, security)
I Promoted by . . .

I (Altran) Praxis
I Tool supplier: VC generator, automatic & interactive provers
I Provider of consultancy services

I Correct by Construction methodology
I Extensive use of Z specifications

I Example project: iFACTS — UK air traffic control



Research Opportunities

I Access to real-world case studies
I Development of better provers (both automatic and

interactive)
I Current proof focuses on exception freedom
I Use of richer assertions deterred by

I incompleteness of Praxis automatic prover
I awkwardness of Praxis interactive prover

I Automatic invariant generation

I Proof explanation comprehensible to engineers

I Counter-example explanation



Current Work

I Have developed tool to translate Spark VCs to
I SMT-Lib language (logics with ∀∃, Z, R, UFs)
I Simplify language
I API calls for Yices and Cvc3

I Tool
I gives Spark users access to state-of-the-art Smt solvers
I provides Smt solver developers with interesting benchmarks

I Tool in beta-test. GPL release available.
I Observations

I Best Smt solvers faster and more complete than Praxis prover
I Smt solver performance very sensitive to translation
I Much variability in support for non-linear arithmetic

I Translations to Hol flavours and Pvs on the way
I Developing non-linear arithmetic prover (Passmore)

I Link-in likely to be indirect – via Smt solver



Translation Effort

I Spark VC language has rich set of types:
Z, R, {i ..j}, ordered enumerations, records, arrays

I SMT-Lib types much simpler: Z, R, limited arrays
I Translation phases include

1. Standardisation
2. Enumerated type elimination
3. Formula/term separation
4. Type refinement
5. Array & record elimination
6. Boolean term elimination
7. Arithmetic simplification
8. Arithmetic elimination
9. Type name & abstract type elimination



Translation example: refinement of array types

I Type refinement: elimination of subtypes

Bool, {0..9} Int
Array {0..9} of Array Int of

[# fst : {0..9}, snd : Bool #] [# fst : Int, snd : Int #]

I Type T can be modelled by type T+ and unary predicate ∈T

I Consider A
.
= Array I of E modelled by A+ .

= Array I+ of E+

I If ∈A (a)
.
= ∀i : I+. ∈I (i) ⇒ ∈E (a[i ])

then a binary relation on A+ for when two arrays are same is
a ≡A a′ .

= ∀i : I+. ∈I (i) ⇒ a[i ] =E a′[i ]

I However, if
∈A (a)

.
= ∀i : I+. (∈I (i) ⇒ ∈E (a[i ]))

∧ (¬ ∈I (i) ⇒ a[i ] = kE )
then OK to have a ≡A a′ .

= a =A+ a′

I In general, for many types T might need non-trivial ≡T on T+



Implications for a Rich Model Language

I Components of an RML might handle
I Control structure
I Structure of program state

Will focus on data types for latter (e.g. after VC Gen has
eliminated former)

I Tension
I Prover developers want simple set of types
I Users want richer set of types

I Should reconcile by building standard translation tools
I Allows developers and users to focus on their primary work
I Developers still free to work on support for richer types

e.g. arrays, polymorphic types

I RML should be family of languages like sub-logics of
SMT-Lib

I Part of RML could be extension of SMT-Lib



How rich could RML types be?

I No need to be too prescriptive
I Specification precision achieved with dependent types and

subtypes
I Subtypes for function domains avoid need for partial types
I Both kinds feature in PVS, Nuprl, SAL, Yices 1, CVC3

I Use of subtypes has drawbacks
I Lose decidability of typing
I Need to prove Type Correctness Conditions in type checking

I Newer Smt solvers (Z3, Yices 2) moving away from these
types

I Any support must be external

I Use of set-theory rather than rich types sometimes advocated
I Lose option of fast type checking of simply-typed skeletons

I Going too far?
I Constructive logics & type theories (Why system . . . )
I Isabelle/HOL or Haskell type classes


	Section 1 Title

