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My Background

Automated inductive theorem proving in HOL. PhD at the
University of Edinburgh (2009), now at Università degli Studi di
Verona.

• Case-Analysis for Rippling and Inductive Proof.
M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.

• Lemma Discovery Techniques and Middle-Out Reasoning for
Automated Inductive Proofs.
M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.

• Conjecture Synthesis for Inductive Theories.
M. Johansson, L. Dixon and A. Bundy. Under revision for JAR,
2010.
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Introduction and Motivation

Induction: Reasoning about repetition, e.g. recursive datatypes
and functions.
Challenge: Automate lemma discovery for (rewrite based)
inductive proofs.

• Lemma typically need a separate inductive proof, not just an
intermediate result.

• Generally assumed to require user intervention.

• Large libraries of previously proved theorems/lemmas e.g.
Isabelle.

• Libraries insufficient for new theory developments.
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IsaCoSy: Inductive Conjecture Synthesis

• Build conjectures from available functions, datatypes and
variables.

• General: Can be applied to any recursive datatype defined in
Isabelle without modification.

• Key idea for tractability: Turn rewriting upside-down.
• Only generate irreducible terms.

• Enforced by constraints on term-synthesis. Avoid naive
generate-and-test.

• Counter-example checking (Isabelle) + automatic inductive
prover (IsaPlanner)

• New theorems provide more constraints.
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Motivating Example: Definitions of List Reversal

Definition of rev :
rev([ ]) = [ ]

rev(h#t) = rev(t)@[h]

Constraints on synthesis:

• Disallow [ ] to occur as argument of rev .

• Disallow # (cons) to occur as argument of rev .
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Motivating Example: Distinctness for Lists

From definition of lists, Isabelle automatically derives:

[ ] 6= (h#t)

Constraint on synthesis:

• Disallow [ ] and # as simultaneous top-level arguments to
opposite sides of an equality.
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Motivating Example: Reflexivity

Reflexivity as a rewrite rule:

(x = x) = True

Constraint on synthesis:

• Disallow both sides of equality to be instantiated to the same
term.
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Motivating Example: Commutativity

Suppose we know that max is commutative:

max x y = max y x

Not a rewrite rule. Derive constraint on argument order:

• Measure of 1st argument ≥ measure of 2nd argument.

• Cuts out many symmetries.
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Constraint Generation

• Initial constraints automatically derived from rules in input
theory.

• Expressed in IsaCoSy’s constraint language.

• Constraint from rule stored for its principal function symbol.

Reflexivity: (x = x) = True
UnEqual(arg1, arg2)

List Distinctness: [ ] 6= (h#t)
NotAllowed(arg1, [ ])
NotAllowed(arg2, #)
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Additional Heuristics

Can be configured by the user:

• Number of different variables. Default: 1 + max arity of
functions.

• Where variables occur e.g. Vars(RHS) ⊆ Vars(LHS)

• Eagerly check for associativity and commutativity prior to
synthesis.
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The Synthesis Process

• Input: Initial constraints, max size of terms, user controlled
heuristics.

• Start small: ?h1︸︷︷︸
size 1

= ?h2︸︷︷︸
size 1

• Insert allowed constants and variables.

• After each size-iteration, counter-example check and prove.

• Generate new constraints from any new theorems.

• Increase term-size.
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Evaluation

• Evaluated on theories about natural numbers, lists and binary
trees.

• Quality: How does the set of theorems produced by IsaCoSy’s
compare to Isabelle’s libraries?

• Efficiency: How much does IsaCoSy’s heuristics improve over
naive generate and test?
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Natural Numbers

10/16 synthesised theorems are also in Isabelle’s library:

a + 0 = a a + Suc b = Suc(a + b)
a ∗ 0 = 0 a ∗ Suc b = a + (a ∗ b)

a + b = b + a a ∗ b = b ∗ a
(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)

(a ∗ b) + (c ∗ b) = (a + c) ∗ b } + six variants not in library(a ∗ b) + (a ∗ c) = (b + c) ∗ a

Isabelle’s library contains another 2 theorems:
(Suc m) + n = m + (Suc n) x + (y + z) = y + (x + z)

Recall: 83%
Precision: 63%
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Lists

9/24 synthesised theorems are also in Isabelle’s library (with @
denoting append):

a @ [ ] = a (a @ b) @ c = a @ (b @ c)
rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) len(rev a) = len a
(map a b) @ (map a c) = map a (b @ c) } + 13 theoremsfoldl a (foldl a b c) d = foldl a b (c @ d)
foldr a b (foldr a c d) = foldr a (b @ c) d

• Isabelle’s library contains only the 9 theorems above.

• Extra 13 theorems mostly about rev and append .

Recall: 100%
Precision: 38%
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Binary Trees

Small theory about binary trees, involving functions mirror , nodes
and height. No Isabelle library to compare.

mirror(mirror t) = t size(mirror t) = size t
height(mirror t) = height t max (size t) (height t) = size t
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Run-times

• Compared to naive version: exponential cut in search space
size.

• Synthesis generally takes a couple of hours, depending on
maximum term size.

• Can cut run-times by restricting instantiation of type-variables
for polymorphic datatypes (e.g. lists).

• Largest portion of time spent counter-example checking.
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Future Directions and Applications

• Theory Library Formation:
• Novel theory developments, generating routine library lemmas.
• Generate benchmarks for inductive provers.
• Generate libraries in Rich Model Language that can be shared

between systems?

• Synthesis for generating/refining loop invariants.
• Refinement and Term Synthesis in Loop Invariant Generation.

Maclean, Ireland, Atkey, Dixon. WING 2009.
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Conclusions & Summary

• IsaCoSy: Inductive theory formation by synthesis.

• Only generates irreducible terms, which keeps search space
tractable.

• High recall, many interesting theorems synthesised.

• Lower precision. Too many variants of theorems generated.

• Using synthesised background theory increase power of prover.
Mange to prove harder theorems automatically.

• dream.inf.ed.ac.uk/projects/lemmadiscovery/

dream.inf.ed.ac.uk/projects/lemmadiscovery/
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Current Work in Verona

With Maria Paola Bonacina. Just starting:

• Extending SMT solver with F.O. reasoning: DPLL(Γ + T).
• DPLL is good at large conjunctions.
• Rewrite based F.O. proves can handle quantifiers better.

• Contrast efficiency/expressiveness of logics. Typed/untyped
settings.

• Extending combination of theories for F.O. provers.

• Combining non-stably infinite theories.
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