# Conjecture Synthesis for Inductive Theory Formation

Moa Johansson

Diparimento di Informatica Università degli Studi di Verona

Workshop on Formal and Automated Theorem Proving and Applications

Belgrade 29-30 January 2010



# My Background

Automated inductive theorem proving in HOL. PhD at the University of Edinburgh (2009), now at Università degli Studi di Verona.

- Case-Analysis for Rippling and Inductive Proof.
   M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.
- Lemma Discovery Techniques and Middle-Out Reasoning for Automated Inductive Proofs.
   M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.
- Conjecture Synthesis for Inductive Theories.
   M. Johansson, L. Dixon and A. Bundy. Under revision for JAR, 2010.

# My Background

Automated inductive theorem proving in HOL. PhD at the University of Edinburgh (2009), now at Università degli Studi di Verona.

- Case-Analysis for Rippling and Inductive Proof.
   M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.
- Lemma Discovery Techniques and Middle-Out Reasoning for Automated Inductive Proofs.
   M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.
- Conjecture Synthesis for Inductive Theories.
   M. Johansson, L. Dixon and A. Bundy. Under revision for JAR, 2010.

## Introduction and Motivation

**Induction:** Reasoning about repetition, e.g. recursive datatypes and functions.

**Challenge:** Automate lemma discovery for (rewrite based) inductive proofs.

- Lemma typically need a separate inductive proof, not just an intermediate result.
- Generally assumed to require user intervention.
- Large libraries of previously proved theorems/lemmas e.g. lsabelle.
- Libraries insufficient for new theory developments.

## IsaCoSy: Inductive Conjecture Synthesis

- Build conjectures from available functions, datatypes and variables.
- General: Can be applied to any recursive datatype defined in Isabelle without modification.
- Key idea for tractability: Turn rewriting upside-down.
  - Only generate irreducible terms.
- Enforced by constraints on term-synthesis. Avoid naive generate-and-test.
- Counter-example checking (Isabelle) + automatic inductive prover (IsaPlanner)
- New theorems provide more constraints.



## Overview of IsaCoSy



# Motivating Example: Definitions of List Reversal

Definition of rev:

$$rev([\ ]) = [\ ]$$
 $rev(h\#t) = rev(t)@[h]$ 

Constraints on synthesis:

- Disallow [] to occur as argument of rev.
- Disallow # (cons) to occur as argument of rev.

From definition of lists, Isabelle automatically derives:

$$[\ ]\neq (h\#t)$$

Constraint on synthesis:

 Disallow [] and # as simultaneous top-level arguments to opposite sides of an equality. Reflexivity as a rewrite rule:

$$(x = x) = True$$

Constraint on synthesis:

 Disallow both sides of equality to be instantiated to the same term.

## Motivating Example: Commutativity

Suppose we know that max is commutative:

$$\max x \ y = \max y \ x$$

Not a rewrite rule. Derive constraint on argument order:

- Measure of 1st argument > measure of 2nd argument.
- Cuts out many symmetries.

#### Constraint Generation

- Initial constraints automatically derived from rules in input theory.
- Expressed in IsaCoSy's constraint language.
- Constraint from rule stored for its principal function symbol.

#### Constraint Generation

- Initial constraints automatically derived from rules in input theory.
- Expressed in IsaCoSy's constraint language.
- Constraint from rule stored for its principal function symbol.

```
Reflexivity: (x = x) = True
        UnEqual(arg<sub>1</sub>, arg<sub>2</sub>)
List Distinctness: [] \neq (h \# t)
         NotAllowed(arg<sub>1</sub>, [])
         NotAllowed(arg<sub>2</sub>, #)
```

## Additional Heuristics

#### Can be configured by the user:

- Number of different variables. Default: 1 + max arity of functions.
- Where variables occur e.g.  $Vars(RHS) \subseteq Vars(LHS)$
- Eagerly check for associativity and commutativity prior to synthesis.

- Input: Initial constraints, max size of terms, user controlled heuristics.
- Start small:  $?h_1 = ?h_2$ size 1 size 1
- Insert allowed constants and variables.
- After each size-iteration, counter-example check and prove.
- Generate new constraints from any new theorems.
- Increase term-size

#### **Evaluation**

- Evaluated on theories about natural numbers, lists and binary trees.
- Quality: How does the set of theorems produced by IsaCoSy's compare to Isabelle's libraries?
- **Efficiency**: How much does IsaCoSy's heuristics improve over naive generate and test?

10/16 synthesised theorems are also in Isabelle's library:

Isabelle's library contains another 2 theorems:

$$(Suc m) + n = m + (Suc n) x + (y + z) = y + (x + z)$$

Recall: 83% Precision: 63% 9/24 synthesised theorems are also in Isabelle's library (with @ denoting append):

$$\begin{array}{c} a @ [ ] = a \\ rev(rev \ a) = a \end{array} \\ (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{array}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{aligned}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{aligned}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{aligned}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{aligned}$$
 
$$\begin{array}{c} (a @ \ b) @ \ c = a @ \ (b @ \ c) \\ (rev \ a) @ \ (rev \ b) = rev \ (b @ \ a) \end{aligned}$$

- Isabelle's library contains only the 9 theorems above.
- Extra 13 theorems mostly about rev and append.

Recall: 100% Precision: 38%

## **Binary Trees**

Small theory about binary trees, involving functions *mirror*, *nodes* and *height*. No Isabelle library to compare.

$$mirror(mirror\ t) = t$$
  $size(mirror\ t) = size\ t$   
 $height(mirror\ t) = height\ t$   $max\ (size\ t)\ (height\ t) = size\ t$ 

## Run-times

- Compared to naive version: exponential cut in search space size.
- Synthesis generally takes a couple of hours, depending on maximum term size.
- Can cut run-times by restricting instantiation of type-variables for polymorphic datatypes (e.g. lists).
- · Largest portion of time spent counter-example checking.

## Future Directions and Applications

- Theory Library Formation:
  - Novel theory developments, generating routine library lemmas.
  - Generate benchmarks for inductive provers.
  - Generate libraries in Rich Model Language that can be shared between systems?
- Synthesis for generating/refining loop invariants.
  - Refinement and Term Synthesis in Loop Invariant Generation.
     Maclean, Ireland, Atkey, Dixon. WING 2009.

## Conclusions & Summary

- IsaCoSy: Inductive theory formation by synthesis.
- Only generates irreducible terms, which keeps search space tractable.
- High recall, many interesting theorems synthesised.
- Lower precision. Too many variants of theorems generated.
- Using synthesised background theory increase power of prover.
   Mange to prove harder theorems automatically.
- dream.inf.ed.ac.uk/projects/lemmadiscovery/

### Current Work in Verona

#### With Maria Paola Bonacina. Just starting:

- Extending SMT solver with F.O. reasoning: DPLL( $\Gamma + T$ ).
  - DPLL is good at large conjunctions.
  - Rewrite based F.O. proves can handle quantifiers better.
- Contrast efficiency/expressiveness of logics. Typed/untyped settings.
- Extending combination of theories for F.O. provers.
- · Combining non-stably infinite theories.