
Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Conjecture Synthesis for Inductive Theory
Formation

Moa Johansson

Diparimento di Informatica
Università degli Studi di Verona

Workshop on Formal and Automated Theorem Proving and
Applications

Belgrade 29-30 January 2010

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

My Background

Automated inductive theorem proving in HOL. PhD at the
University of Edinburgh (2009), now at Università degli Studi di
Verona.

• Case-Analysis for Rippling and Inductive Proof.
M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.

• Lemma Discovery Techniques and Middle-Out Reasoning for
Automated Inductive Proofs.
M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.

• Conjecture Synthesis for Inductive Theories.
M. Johansson, L. Dixon and A. Bundy. Under revision for JAR,
2010.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

My Background

Automated inductive theorem proving in HOL. PhD at the
University of Edinburgh (2009), now at Università degli Studi di
Verona.

• Case-Analysis for Rippling and Inductive Proof.
M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.

• Lemma Discovery Techniques and Middle-Out Reasoning for
Automated Inductive Proofs.
M. Johansson, L. Dixon and A. Bundy. Submitted to ITP 2010.

• Conjecture Synthesis for Inductive Theories.
M. Johansson, L. Dixon and A. Bundy. Under revision for JAR,
2010.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Introduction and Motivation

Induction: Reasoning about repetition, e.g. recursive datatypes
and functions.
Challenge: Automate lemma discovery for (rewrite based)
inductive proofs.

• Lemma typically need a separate inductive proof, not just an
intermediate result.

• Generally assumed to require user intervention.

• Large libraries of previously proved theorems/lemmas e.g.
Isabelle.

• Libraries insufficient for new theory developments.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

IsaCoSy: Inductive Conjecture Synthesis

• Build conjectures from available functions, datatypes and
variables.

• General: Can be applied to any recursive datatype defined in
Isabelle without modification.

• Key idea for tractability: Turn rewriting upside-down.
• Only generate irreducible terms.

• Enforced by constraints on term-synthesis. Avoid naive
generate-and-test.

• Counter-example checking (Isabelle) + automatic inductive
prover (IsaPlanner)

• New theorems provide more constraints.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Overview of IsaCoSy

Initial
Theory

Constraint
Generator

Synthesis
Engine

Counter-Example
Checker

Inductive
Prover

Open
Conjectures

Theorems

False
Conjectures

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Motivating Example: Definitions of List Reversal

Definition of rev :
rev([]) = []

rev(h#t) = rev(t)@[h]

Constraints on synthesis:

• Disallow [] to occur as argument of rev .

• Disallow # (cons) to occur as argument of rev .

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Motivating Example: Distinctness for Lists

From definition of lists, Isabelle automatically derives:

[] 6= (h#t)

Constraint on synthesis:

• Disallow [] and # as simultaneous top-level arguments to
opposite sides of an equality.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Motivating Example: Reflexivity

Reflexivity as a rewrite rule:

(x = x) = True

Constraint on synthesis:

• Disallow both sides of equality to be instantiated to the same
term.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Motivating Example: Commutativity

Suppose we know that max is commutative:

max x y = max y x

Not a rewrite rule. Derive constraint on argument order:

• Measure of 1st argument ≥ measure of 2nd argument.

• Cuts out many symmetries.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Constraint Generation

• Initial constraints automatically derived from rules in input
theory.

• Expressed in IsaCoSy’s constraint language.

• Constraint from rule stored for its principal function symbol.

Reflexivity: (x = x) = True
UnEqual(arg1, arg2)

List Distinctness: [] 6= (h#t)
NotAllowed(arg1, [])
NotAllowed(arg2, #)

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Constraint Generation

• Initial constraints automatically derived from rules in input
theory.

• Expressed in IsaCoSy’s constraint language.

• Constraint from rule stored for its principal function symbol.

Reflexivity: (x = x) = True
UnEqual(arg1, arg2)

List Distinctness: [] 6= (h#t)
NotAllowed(arg1, [])
NotAllowed(arg2, #)

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Additional Heuristics

Can be configured by the user:

• Number of different variables. Default: 1 + max arity of
functions.

• Where variables occur e.g. Vars(RHS) ⊆ Vars(LHS)

• Eagerly check for associativity and commutativity prior to
synthesis.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

The Synthesis Process

• Input: Initial constraints, max size of terms, user controlled
heuristics.

• Start small: ?h1︸︷︷︸
size 1

= ?h2︸︷︷︸
size 1

• Insert allowed constants and variables.

• After each size-iteration, counter-example check and prove.

• Generate new constraints from any new theorems.

• Increase term-size.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Evaluation

• Evaluated on theories about natural numbers, lists and binary
trees.

• Quality: How does the set of theorems produced by IsaCoSy’s
compare to Isabelle’s libraries?

• Efficiency: How much does IsaCoSy’s heuristics improve over
naive generate and test?

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Natural Numbers

10/16 synthesised theorems are also in Isabelle’s library:

a + 0 = a a + Suc b = Suc(a + b)
a ∗ 0 = 0 a ∗ Suc b = a + (a ∗ b)

a + b = b + a a ∗ b = b ∗ a
(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)

(a ∗ b) + (c ∗ b) = (a + c) ∗ b } + six variants not in library(a ∗ b) + (a ∗ c) = (b + c) ∗ a

Isabelle’s library contains another 2 theorems:
(Suc m) + n = m + (Suc n) x + (y + z) = y + (x + z)

Recall: 83%
Precision: 63%

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Lists

9/24 synthesised theorems are also in Isabelle’s library (with @
denoting append):

a @ [] = a (a @ b) @ c = a @ (b @ c)
rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) len(rev a) = len a
(map a b) @ (map a c) = map a (b @ c) } + 13 theoremsfoldl a (foldl a b c) d = foldl a b (c @ d)
foldr a b (foldr a c d) = foldr a (b @ c) d

• Isabelle’s library contains only the 9 theorems above.

• Extra 13 theorems mostly about rev and append .

Recall: 100%
Precision: 38%

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Binary Trees

Small theory about binary trees, involving functions mirror , nodes
and height. No Isabelle library to compare.

mirror(mirror t) = t size(mirror t) = size t
height(mirror t) = height t max (size t) (height t) = size t

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Run-times

• Compared to naive version: exponential cut in search space
size.

• Synthesis generally takes a couple of hours, depending on
maximum term size.

• Can cut run-times by restricting instantiation of type-variables
for polymorphic datatypes (e.g. lists).

• Largest portion of time spent counter-example checking.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Future Directions and Applications

• Theory Library Formation:
• Novel theory developments, generating routine library lemmas.
• Generate benchmarks for inductive provers.
• Generate libraries in Rich Model Language that can be shared

between systems?

• Synthesis for generating/refining loop invariants.
• Refinement and Term Synthesis in Loop Invariant Generation.

Maclean, Ireland, Atkey, Dixon. WING 2009.

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Conclusions & Summary

• IsaCoSy: Inductive theory formation by synthesis.

• Only generates irreducible terms, which keeps search space
tractable.

• High recall, many interesting theorems synthesised.

• Lower precision. Too many variants of theorems generated.

• Using synthesised background theory increase power of prover.
Mange to prove harder theorems automatically.

• dream.inf.ed.ac.uk/projects/lemmadiscovery/

dream.inf.ed.ac.uk/projects/lemmadiscovery/

Introduction and Motivation Conjecture Synthesis for Induction Experimental Results Conclusions and Further Work

Current Work in Verona

With Maria Paola Bonacina. Just starting:

• Extending SMT solver with F.O. reasoning: DPLL(Γ + T).
• DPLL is good at large conjunctions.
• Rewrite based F.O. proves can handle quantifiers better.

• Contrast efficiency/expressiveness of logics. Typed/untyped
settings.

• Extending combination of theories for F.O. provers.

• Combining non-stably infinite theories.

	Introduction and Motivation
	Conjecture Synthesis for Induction
	The IsaCoSy System
	Motivating Examples
	Constraint Generation and Heuristics
	Synthesis Process

	Experimental Results
	Theorems Produced
	Run-times and Efficiency

	Conclusions and Further Work
	Conclusions IsaCoSy
	Current Work in Verona

