
The objective of the Action is making automated reasoning

techniques and tools applicable to a wider range of

problems, as well as making them easier to use by

researchers, software developers, hardware designers, and

information system users and developers.

Towards a Rich Model Toolkit
An Infrastructure for Reliable Computer Systems

Viktor Kuncak
Lab for Automated Reasoning and Analysis

http://lara.epfl.ch

http://richmodels.org

http://lara.epfl.ch/
http://richmodels.org/

COST Action IC0901

Application area: reliable computer systems

Technique: automated reasoning (broadly)

– e.g. theorem proving, verification, synthesis

Nature of activities

– collaboration on existing national research

– framework to obtain further national and

international funds

– intrinsic results, e.g. common formats

Forms of activities

1) meetings 2) mutual visits of researchers

Activities in 2010

1. This meeting, 28-29 January 2010

2. Synthesis, Verification and Analysis of Rich

Models

http://richmodels.org/svarm

– at FLOC, Edinburgh July 20-21 2010,

collocated with IJCAR(CADE+) and CAV

(also there: LICS, ITP,RTA,SAT,CSF,ICLP)

– invited speaker: Natarajan Shankar

3. Meeting in Lugano (CH), with FMCAD

– Significant hardware verification audience

– Analysis and Synthesis

http://richmodels.org/svarm
http://richmodels.org/svarm
http://richmodels.org/svarm
http://richmodels.org/svarm
http://richmodels.org/svarm

Country MC Member

Austria (MC Member) Professor Roderick BLOEM

Austria (MC Member) Professor Armin BIERE

Czech Republic (MC Member) Dr Stefan RATSCHAN

Czech Republic (MC Member) Dr Tomas VOJNAR

Denmark (MC Member) Professor Peter SESTOFT

Denmark (MC Member) Professor Lars BIRKEDAL

Denmark (MC Substitute Member) Professor Peter SCHNEIDER-KAMP

Estonia (MC Member) Dr Jaan RAIK

Finland (MC Member) Professor Ilkka NIEMELA

Finland (MC Member) Professor Ivan PORRES

Finland (MC Substitute Member) Professor Keijo HELJANKO

France (MC Member) Dr Tayssir TOUILI

France (MC Member) Dr Barbara JOBSTMANN

Germany (MC Member) Professor Tobias NIPKOW

Germany (MC Member) Professor Rupak MAJUMDAR

Germany (MC Substitute Member) Dr Andrey RYBALCHENKO

Israel (MC Member) Professor Alexander RABINOVICH

Israel (MC Member) Dr Eran YAHAV

Italy (MC Member) Professor Maria Paola BONACINA

Norway (MC Member) Professor Marc BEZEM

Poland (MC Member) Professor Leszek PACHOLSKI

Romania (MC Member) Dr Gabriel ISTRATE

Romania (MC Member) Dr Marius MINEA

Serbia (MC Member) Professor Silvia GHILEZAN

Serbia (MC Member) Dr Predrag JANICIC

Slovenia (MC Member) Professor Denis TRCEK

Slovenia (MC Substitute Member) Mr Iztok STARC (Pending)

Spain (MC Member) Dr Enric RODRIGUEZ CARBONELL

Spain (MC Member) Dr Cesar SANCHEZ

Sweden (MC Member) Professor Reiner HAHNLE

Switzerland (MC Member) Professor Natasha SHARYGINA

United Kingdom (MC Member) Dr Paul JACKSON

United Kingdom (MC Member) Professor Ian HORROCKS

United Kingdom (MC Substitute Member) Dr Philipp RUEMMER

United Kingdom (MC Substitute Member) Dr Radu CALINESCU

Europe-wide

initiative

http://cost.esf.org/index.php?id=176&idecost=21163
http://cost.esf.org/index.php?id=176&idecost=21167
http://cost.esf.org/index.php?id=176&idecost=20909
http://cost.esf.org/index.php?id=176&idecost=23640
http://cost.esf.org/index.php?id=176&idecost=23201
http://cost.esf.org/index.php?id=176&idecost=23286
http://cost.esf.org/index.php?id=176&idecost=23789
http://cost.esf.org/index.php?id=176&idecost=23789
http://cost.esf.org/index.php?id=176&idecost=23789
http://cost.esf.org/index.php?id=176&idecost=25104
http://cost.esf.org/index.php?id=176&idecost=22042
http://cost.esf.org/index.php?id=176&idecost=22401
http://cost.esf.org/index.php?id=176&idecost=22236
http://cost.esf.org/index.php?id=176&idecost=23816
http://cost.esf.org/index.php?id=176&idecost=23879
http://cost.esf.org/index.php?id=176&idecost=21388
http://cost.esf.org/index.php?id=176&idecost=23900
http://cost.esf.org/index.php?id=176&idecost=21061
http://cost.esf.org/index.php?id=176&idecost=21061
http://cost.esf.org/index.php?id=176&idecost=21061
http://cost.esf.org/index.php?id=176&idecost=21061
http://cost.esf.org/index.php?id=176&idecost=20198
http://cost.esf.org/index.php?id=176&idecost=25017
http://cost.esf.org/index.php?id=176&idecost=22786
http://cost.esf.org/index.php?id=176&idecost=24934
http://cost.esf.org/index.php?id=176&idecost=23274
http://cost.esf.org/index.php?id=176&idecost=21475
http://cost.esf.org/index.php?id=176&idecost=21220
http://cost.esf.org/index.php?id=176&idecost=20604
http://cost.esf.org/index.php?id=176&idecost=20668
http://cost.esf.org/index.php?id=176&idecost=20668
http://cost.esf.org/index.php?id=176&idecost=20668
http://cost.esf.org/index.php?id=176&idecost=20668
http://cost.esf.org/index.php?id=176&idecost=25015
http://cost.esf.org/index.php?id=176&idecost=21227
http://cost.esf.org/index.php?id=176&idecost=21227
http://cost.esf.org/index.php?id=176&idecost=21227
http://cost.esf.org/index.php?id=176&idecost=21227
http://cost.esf.org/index.php?id=176&idecost=21242
http://cost.esf.org/index.php?id=176&idecost=23185
http://cost.esf.org/index.php?id=176&idecost=21361
http://cost.esf.org/index.php?id=176&idecost=20469
http://cost.esf.org/index.php?id=176&idecost=20516
http://cost.esf.org/index.php?id=176&idecost=24787
http://cost.esf.org/index.php?id=176&idecost=24967
http://cost.esf.org/index.php?id=176&idecost=24967
http://cost.esf.org/index.php?id=176&idecost=24967
http://cost.esf.org/index.php?id=176&idecost=24967

Work Groups

1. Rich Model Language

Design, Benchmarks (a unifying activity)

Chair: Tobias Nipkow; Vice Chair: Paul Jackson

2. Decision Procedures for

Rich Model Language Fragments (key technique)

Chair: Maria Paola Bonacina; V.Chair: Armin Biere

3. Analysis of Executable Rich Models

large potential for practical impact

Chair: Natasha Sharygina

4. Synthesis from Rich Models

Chair: Barbara Jobstmann;V.Chair: Roderick Bloem

Rich Model Language (RML)

mathematical model ≈ specification (formula)

RML is a specification language

– rich ≈ great expressive power (higher-order logic)

– precise syntax (abstract and concrete)

– precise (and natural) semantics – agree, not invent

– a set of more tractable fragments

Rich Model Toolkit (RMT)

– set of tools that manipulate models in RML

– tools interoperate thanks to the common language

– benchmark suite drives further development

Example of verification of linked list
class List {

private List next;

private Object data;

private static List root;

private static int size;

public static void addNew(Object x) {

List n1 = new List();

n1.next = root;

n1.data = x;

root = n1;

size = size + 1;

}

}

nextnext next

root

data data data data

x

size: 34

ensure |{data(n). next*(root,n)}| = |old({data(n). next*(root,n)})| + 1

Set of stored objects:

{data(n). next*(root,n)}

next*

Example Rich Constructs in Formulas

Sets and relations

– represent data structures in programs

– the language of mathematics

Transitive closure

– of un-interpreted relations: regions of program heap

– of transition systems: reachable states of system

Cardinality

– generalize quantifiers, e.g. card{x|P(x)}=1

– |A|=|B| - shows up naturally in many examples

Recursive definitions as part of language of formulas

– capture computable functions

– natural for both specification and constraint solving

Benefits of RML for Tools

• Tools that cover a wider range of problems

– solve problems that combine multiple aspects

• Easier interfacing of tools

– avoid differences that hamper interoperability

• Tools are more likely to be correct

– semantics (though embedding into formulas)

is explicit part of representation

Methodological Benefits of RMT

Some of current approaches to reasoning

– provers for pure logic (FOL, pure HOL)

– decision procedures for individual theories

Current combinations of theories

– specific traditional theories dominate (int, UF)

– almost exclusively disjoint combinations

– many sophisticated decidable logics left out,

they do not fit the framework

Opportunity: consider richer language,

combine sophisticated decision procedures

How to reason about rich models?

Rich Model Language

fragment1

fragment3

fragment2

combination technique

dp3

decision

procdure1

dp2

combination

F(x,y)

formula is unsatisfiable
(false for all x,y)

formula is true for
(x1, y1)

formula
(bool-valued expression)

Decision Procedures for Fragments

Decision

Procedure

Ways of defining RML fragments

Syntactic restriction examples – on grammar

– no relations/functions/quantifier alt. / not / or

– use only two variable names, guarded fragment

Symbols satisfy FO axioms – FO theories

– in HOL finite formulas often suffice, (Ax /\ F)

– up to system which part of formula are axioms

Program representation: complex structure

– concurrency? recursion? mutation?

Executable. Finitely bounded

Procedure answers: 1) in fragment? 2) valid?

Our non-disjoint combination result

relation images

[YPK10]

BAPA + order

So far, using axiomatization with FOL provers, SMT provers, and HOL prover LEO II

suggest that these general approaches do not work for these problems out of box

One Consequence

Calculus of Data Structures

bag (multiset)

set

setof

content

msize

7

ssize

tsize

3

tree

Supports all natural operations

on trees, multisets, sets, and homomorphisms between them

This is one combination technique

Rich Model Language

fragment1

fragment3

fragment2

combination technique

dp3

decision

procdure1

dp2

combination

Work Groups

1. Rich Model Language

Design, Benchmarks (a unifying activity)

Chair: Tobias Nipkow; V.Chair: Paul Jackson

2. Decision Procedures for

Rich Model Language Fragments (key technique)

Chair: Maria Paola Bonacina; V.Chair: Armin Biere

3. Analysis of Executable Rich Models

large potential for practical impact

Chair: Natasha Sharygina

4. Synthesis from Rich Models

Chair: Barbara Jobstmann;V.Chair: Roderick Bloem

Formula-Based Analyses

Bounded reachability question as a formula

Interpolation-based analysis

– get invariants from absence of short error paths

Predicate abstraction

– propositional combinations of “given” formulas

– recently: add universal quantifiers (heap)

Template-based analyses

– invariants are polynomials (find coefficients)

– set constraints: invariants are sets of terms

Candidate tools to incorporate into RMT

Rich Models for Static Analysis

New requirements from analysis

Approximate a given formula by a formula in

a given fragment

– extract information from user annotations

– eliminate quantifiers (intermediate states)

– approximate disjunction (join in lattice)

– approximate strongest postcondition (post#)

Avoid non-terminating sequence of formulas

– widening

Find a missing coefficient in a formula

– template based analysis of polynomials

Executing Specifications

Why

– execution is efficient constraint propagation

– debug specifications

– make programming languages higher level

Approaches

– solve constraints at run-time (CLP)

– mode analysis (recent workshop in Belgrade)

– our recent work: delayed execution – ICSE‟10

– compile constraints synthesis – PLDI‟10

Work Groups

1. Rich Model Language

Design, Benchmarks (a unifying activity)

Chair: Tobias Nipkow; V.Chair: Paul Jackson

2. Decision Procedures for

Rich Model Language Fragments (key technique)

Chair: Maria Paola Bonacina; V.Chair: Armin Biere

3. Analysis of Executable Rich Models

large potential for practical impact

Chair: Natasha Sharygina

4. Synthesis from Rich Models

Chair: Barbara Jobstmann;V.Chair: Roderick Bloem

F(x,y)

formula is unsatisfiable
(false for all x,y)

formula is true for
(x1, y1)

formula
(bool-valued expression)

Starting point: counterexample-generating

decision procedures (satisfiability)

Decision

Procedure

10 < y Æ x < 6 Æ y < 3*x

true for
x=4, y=11

formula F with integer
variables

Example: integer linear arithmetic

Decision

Procedure

No a-priori bounds on integers
(add e.g. 0 <= y < 264 if needed)

function g on integers
gx(y)=(y+1) div 3

formula F with integer
variables

Synthesis procedure for integers

Synthesis

Procedure

Two kinds of variables:
inputs – here y
outputs – here x precondition

P on y
10 < y < 14

- P describes precisely when solution exists.
- (gx(y),y) is solution whenever P(y)

10 < y Æ x < 6 Æ y < 3*x

How does it work?

Quantifier elimination

Take formula of the form
9 x. F(x,y)

replace it with an equivalent formula

G(y)

without introducing new variables

Repeat this process to eliminate all variables

Algorithms for quantifier elimination (QE) exist for:
– Presburger arithmetic (integer linear arithmetic)

– set algebra

– algebraic data types (term algebras)

– polynomials over real/complex numbers

– sequences of elements from structures with QE

Example: test-set method for QE

(e.g. Weispfenning‟97)
Take formula of the form
9 x. F(x,y)

replace it with an equivalent formula

Çi=1
n Fi(ti(y),y)

We can use it to generate a program:

x = if F1(t1(y),y) then t1(y)
else if F2(t2(y),y) then t2(y)

…

else if Fn(tn(y),y) then tn(y)

else throw new Exception(“No solution exists”)

Can do it more efficiently – generalizing decision procedures
and quantifier-elimination algorithms (use div, %, …)

Example: Omega-test for Presburger arithmetic – Pugh‟92

Presburger Arithmetic

T ::= k | C | T1 + T2 | T1 – T2 | C¢T

A ::= T1 = T2 | T1 < T2

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9k.F

Presburger showed quantifier elimination for PA in 1929

• requires introducing divisibility predicates

• Tarski said this was not enough for a PhD thesis

Normal form for quantifier elimination step:

Parameterized Presburger arithmetic

Given a base, and number convert a number into this base

val base = read(…)

val x = read(…)

val (d2,d1,d0) = choose((x2,x1,x0) =>

x0 + base * (x1 + base * x2) == x &&

0 <= x0 < base &&

0 <= x1 < base)

This also works, using a similar algorithm

• This time essential to have „for’ loops

„for‟ loops are useful even for simple PA case

• reduce code size, preserve efficiency

Synthesis as Scala-compiler plugin

Warning: solution not unique for: totsec=60

Given number of seconds, break it into hours, minutes, leftover

our synthesis procedure

Synthesis for Pattern Matching

Our Scala compiler plugin:

• generates code that does division and testing of reminder

• checks that all cases are covered

• can use any integer linear arithmetic expressions

Beyond numbers

Boolean Algebra with Presburger Arithmetic

Our results related to BAPA
– complexity for full BAPA (like PA, has QE)

– polynomial-time fragments

– complexity for Q.F.BAPA

– generalized to multisets

– combined with function images

– used as a glue to combine expressive logics

– synthesize sets of objects from specifications

S ::= V | S1 [S2 | S1 Å S2 | S1 n S2

T ::= k | C | T1 + T2 | T1 – T2 | C¢T | card(S)

A ::= S1 = S2 | S1 µ S2 | T1 = T2 | T1 < T2

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9S.F | 9k.F

Synthesizing sets

val s = …

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s &&

a1 intersect a2 == empty &&

abs(a1.size − a2.size) ≤ 1)

Partition a set into two parts of almost-equal size

http://lara.epfl.ch/dokuwiki/comfusy

Complete Functional Synthesis

http://lara.epfl.ch/dokuwiki/comfusy

Scala progrmaming language – developed

in Martin Odersky‟s group at EPFL

http://www.scala-lang.org

Time improvements of synthesis

Example: propositional formula F
var p = read(…); var q = read(…)

val (p0,q0) = choose((p,q) => F(p,q,u,v))

– SAT is NP-hard

– generate BDD circuit over input variables

• for leaf nodes compute one output, if exists

– running through this BDD is polynomial

Reduced NP problem to polynomial one

Also works for linear rational arithmetic

(build decision tree with comparisons)

Rich Model Toolkit in LARA Group

Infrastructure for reliable computer systems

– Rich Model Language – unifying activity

• an initial proposal based on Isabelle/HOL

– Decision Procedures – key enabling technique

• new decision procedures, their combination

– Analysis of Transition systems – static analysis,

abstract interpretation, verification

• plans to work on constraint-based analyses

– Synthesis of systems correct by construction

• currently for Presburger arithmetic and sets

