Methodology for Comparison and Ranking of SAT Solvers

Mladen Nikolić
Third Workshop on Formal and Automated Theorem Prooving and Applications

January 29, 2010.

- Introduction
- 2 Preliminaries
- 3 Methodology
- 4 Evaluation
- 6 Related work
- **6** Conclusions

- Introduction
- 2 Preliminaries
- Methodology
- 4 Evaluation
- 6 Related work
- 6 Conclusions

Comparison of SAT solvers

- SAT solvers
- Importance of SAT solver comparison
 - Large number of proposed modifications each year
 - Their usefulness is not self-evident
 - We need to discriminate better between good and bad ideas
- Current approach
 - Unreliable
 - Sometimes inconclusive
 - No discussion if the observed difference could arise by chance

Motivation

	Graph	coloring	Industrial		
Solver	Best	Worst	Best	Worst	
MiniSAT 09z	180	157	159	112	
minisat_cumr r	190	180	150	108	
minisat2	200	183	140	93	
MiniSat2hack	200	183	141	94	

Main goals

- Eliminate chance effects from the comparison
- Decide if there is an overall positive or negative effect
- Give an information on statistical significance of the difference

Main difficulties

- Censored observations
- Comparison of distributions of solving times for one instance
- Combining conclusions obtained on individual instances

- Introduction
- 2 Preliminaries
- Methodology
- 4 Evaluation
- 5 Related work
- 6 Conclusions

Introduction

Statistical hypothesis testing

- Null hypothesis H₀
- Test statistic T
- $p = P(|T| \ge t|H_0)$
- If $p < \alpha$ then reject H_0
- Effect size

Comparing two distributions

Point biserial correlation

Introduction

• Point biserial correlation ρ_{pb} can be estimated by

$$r_{pb} = \frac{\sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{N} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{N} (Y_i - \overline{Y})^2}}$$

• $\rho_{pb}, r_{pb} \in [-1, +1]$

Point biserial correlation

Handling censored data

Introduction

- Gehan statistic W_G
- $E(W_G) = P(X > Y) P(X < Y)$
- $\bullet \ \frac{1-E(W_G)}{2} = P(X < Y)$

- Introduction
- 2 Preliminaries
- 3 Methodology
- 4 Evaluation
- 6 Related work
- 6 Conclusions

Sketch of the methodology

- H_0 : no difference in solver performance
- ullet Choose the level of statistical significance lpha
- Calculate differences d_i between samples of solving times of F_i
- Under the null hypothesis the average of d_i shouldn't be too large
- Estimate the p value and check the significance of the average difference
- Check and interpret the effect size

Choice of function d

Introduction

- What could be a good choice for function d?
 - ρ_{pb} ?
 - $\pi = P(X < Y)$?

Choice of function d

Theorem

Under some reasonable conditions the following relations hold

$$W_G = \frac{S_R S_Y}{n_1 n_2} r_{pb} \tag{1}$$

$$\frac{\operatorname{var}(W_G)}{\frac{S_R^2 S_Y^2}{n_1^2 n_2^2} \operatorname{var}(r_{pb})} \to 1 \quad (n_1 + n_2 \to \infty)$$
 (2)

where

$$S_X = \sqrt{\sum_{i=1}^{n_1 + n_2} (X_i - \overline{X})^2}$$

Determining statistical significance

• How is the average of d_i distributed (choosing r_{pb} for d_i)?

$$\overline{z} = \frac{1}{M} \sum_{i=1}^{M} z(r_i)$$

$$\overline{z} \sim \mathcal{N}\left(\frac{1}{M}\sum_{i=0}^{M}z(\rho_i), \frac{1}{M^2}\sum_{i=1}^{M}\frac{var(r_i)}{(1-r_i^2)^2}\right)$$

Determining effect size

ullet Averages of estimates of $ho_{\it pb}$ or π on individual formulae

Ranking

Introduction

Potential problems with transitivity

•
$$P(A > B) > \frac{1}{2}, P(B > C) > \frac{1}{2} \Rightarrow P(A > C) > \frac{1}{2}$$

Kendall-Wei method

- Introduction
- 2 Preliminaries
- Methodology
- 4 Evaluation
- 6 Related work
- 6 Conclusions

Results of comparison

- $\alpha = 0.05$
- Only the difference between S_3 and S_4 is insignificant

	$ ho_{pb}$				π			
	S_1	S_2	<i>S</i> ₃	<i>S</i> ₄	S_1	S_2	<i>S</i> ₃	S ₄
S_1	-	0.326	0.636	0.636	-	0.320	0.140	0.141
S_2	-0.326	-	0.465	0.464	0.680	-	0.239	0.239
S_3	-0.636	-0.465	-	0.010	0.860	0.761	-	0.506
S_4	-0.636	-0.464	-0.010	-	0.859	0.761	0.494	-

How many shuffles do we need?

Introduction

- Introduction
- 2 Preliminaries
- Methodology
- 4 Evaluation
- 6 Related work
- 6 Conclusions

Related work

- Daniel Le Berre, Laurent Simon (2004) shuffling might be important for SAT solver comparison
- Franc Brglez, et al. (2005, 2007) use of standard statistical tests to compare two solvers on one instance yielding *p* value (statistical significance)

- Introduction
- 2 Preliminaries
- Methodology
- 4 Evaluation
- 5 Related work
- **6** Conclusions

Conclusions

- Current approach is unreliable
- New, statistically founded, methodology
 - Offers more reliable information
 - Could make identifying good ideas easier
- Total computational cost can actually stay the same

