
Deciding Non-linear Numerical Constraints:
an Overview

Stefan Ratschan

Academy of Sciences of the Czech Republic

January 30, 2010

1 / 21



Motivation I

By far most micro-processors nowadays do not occur in desktop
PC’s but embedded in technical systems (trains, cars, robots, your
washing machine etc.)

Models of technical systems usually in numerical domains.

2 / 21



Motivation I

By far most micro-processors nowadays do not occur in desktop
PC’s but embedded in technical systems (trains, cars, robots, your
washing machine etc.)

Models of technical systems usually in numerical domains.

2 / 21



Motivation II

Continuous is simpler then discrete!

integers reals

sat. of linear constraints NP-hard polynomial time
sat. of polynomial constraints undecidable decidable

So: to solve discrete problem,
exploit corresponding continuous problem (”relaxation”).

Example: MILP

3 / 21



Motivation II

Continuous is simpler then discrete!

integers reals

sat. of linear constraints NP-hard polynomial time
sat. of polynomial constraints undecidable decidable

So: to solve discrete problem,
exploit corresponding continuous problem (”relaxation”).

Example: MILP

3 / 21



Motivation II

Continuous is simpler then discrete!

integers reals

sat. of linear constraints NP-hard polynomial time
sat. of polynomial constraints undecidable decidable

So: to solve discrete problem,
exploit corresponding continuous problem (”relaxation”).

Example: MILP

3 / 21



Example

x2 + y2 − 1 = 0 ∧ y − x2 = 0

4 / 21



Example
x2 + y2 − 1 = 0 ∧ y − x2 = 0

4 / 21



Example

x2 + y2 − 1 = 0 ∧ y − x2 = 0

4 / 21



Example

x2 + y2 − 1 = 0 ∧ y − x2 = 0

4 / 21



Example

5 / 21



Problem Definition

Given: formula in certain sub-class of FO(R,=,≤, <,+,×, sin, . . . )

Decide: sat/unsat

+ certificate (if possible)

Subclasses: quantifier-free, polynomial, linear, ...

6 / 21



Problem Definition

Given: formula in certain sub-class of FO(R,=,≤, <,+,×, sin, . . . )

Decide: sat/unsat + certificate (if possible)

Subclasses: quantifier-free, polynomial, linear, ...

6 / 21



Problem Definition

Given: formula in certain sub-class of FO(R,=,≤, <,+,×, sin, . . . )

Decide: sat/unsat + certificate (if possible)

Subclasses: quantifier-free, polynomial, linear, ...

6 / 21



Contents

I Certificates

I Decidability and Complexity

I Let’s solve undecidable problems!

7 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .

8 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .

8 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .

8 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .

8 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .

8 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation

5 7→ 4.6557 . . .

8 / 21



Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .

8 / 21



Certificates for Unsatisfiability

Example: p(x) < 0

, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Certificates for Unsatisfiability

Example: p(x) < 0, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Certificates for Unsatisfiability

Example: p(x) < 0, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Certificates for Unsatisfiability

Example: p(x) < 0, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Certificates for Unsatisfiability

Example: p(x) < 0, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Certificates for Unsatisfiability

Example: p(x) < 0, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Certificates for Unsatisfiability

Example: p(x) < 0, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS

9 / 21



Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1: a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]

10 / 21



Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1: a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]

10 / 21



Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1: a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]

10 / 21



Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1:

a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]

10 / 21



Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1: a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]

10 / 21



Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1: a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]

10 / 21



Discussion

Several further interesting and widely used special cases (e.g.,
S-procedure)

How to compute such certificates?

I choose template polynomials
∑

ai~xi

I solve for the coefficients (in polynomial time, using
SDP) [Parrilo, 2000]

Necessary degree of template polynomials:

I in linear case: 0 (Farkas Lemma), we just have to solve a
linear problem

I otherwise: may be huge! usually is incrementally increased

What about certificates after adding sin, . . . ?

11 / 21



Discussion

Several further interesting and widely used special cases (e.g.,
S-procedure)

How to compute such certificates?

I choose template polynomials
∑

ai~xi

I solve for the coefficients (in polynomial time, using
SDP) [Parrilo, 2000]

Necessary degree of template polynomials:

I in linear case: 0 (Farkas Lemma), we just have to solve a
linear problem

I otherwise: may be huge! usually is incrementally increased

What about certificates after adding sin, . . . ?

11 / 21



Discussion

Several further interesting and widely used special cases (e.g.,
S-procedure)

How to compute such certificates?

I choose template polynomials
∑

ai~xi

I solve for the coefficients (in polynomial time, using
SDP) [Parrilo, 2000]

Necessary degree of template polynomials:

I in linear case: 0 (Farkas Lemma), we just have to solve a
linear problem

I otherwise: may be huge! usually is incrementally increased

What about certificates after adding sin, . . . ?

11 / 21



Discussion

Several further interesting and widely used special cases (e.g.,
S-procedure)

How to compute such certificates?

I choose template polynomials
∑

ai~xi

I solve for the coefficients (in polynomial time, using
SDP) [Parrilo, 2000]

Necessary degree of template polynomials:

I in linear case: 0 (Farkas Lemma), we just have to solve a
linear problem

I otherwise: may be huge! usually is incrementally increased

What about certificates after adding sin, . . . ?

11 / 21



Discussion

Several further interesting and widely used special cases (e.g.,
S-procedure)

How to compute such certificates?

I choose template polynomials
∑

ai~xi

I solve for the coefficients (in polynomial time, using
SDP) [Parrilo, 2000]

Necessary degree of template polynomials:

I in linear case: 0 (Farkas Lemma), we just have to solve a
linear problem

I otherwise: may be huge! usually is incrementally increased

What about certificates after adding sin, . . . ?

11 / 21



Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?

12 / 21



Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?

12 / 21



Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?

12 / 21



Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?

12 / 21



Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?

12 / 21



Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?

12 / 21



Quasi-decidability: Motivation

No algorithm that terminates for all problem instances.

Algorithm that terminates for all interesting problem instances?

”Interesting”?

Observation: model only reflects reality up to perturbations

“interesting”: satisfiability does not change under such
perturbations

Well known in numerical analysis (well-posed problems), but in the
context of decidability questions new (independently introduced by
several people since ∼ 2000, usually called robust problem).

13 / 21



Quasi-decidability: Motivation

No algorithm that terminates for all problem instances.

Algorithm that terminates for all interesting problem instances?

”Interesting”?

Observation: model only reflects reality up to perturbations

“interesting”: satisfiability does not change under such
perturbations

Well known in numerical analysis (well-posed problems), but in the
context of decidability questions new (independently introduced by
several people since ∼ 2000, usually called robust problem).

13 / 21



Quasi-decidability: Motivation

No algorithm that terminates for all problem instances.

Algorithm that terminates for all interesting problem instances?

”Interesting”?

Observation: model only reflects reality up to perturbations

“interesting”: satisfiability does not change under such
perturbations

Well known in numerical analysis (well-posed problems), but in the
context of decidability questions new (independently introduced by
several people since ∼ 2000, usually called robust problem).

13 / 21



Quasi-decidability: Motivation

No algorithm that terminates for all problem instances.

Algorithm that terminates for all interesting problem instances?

”Interesting”?

Observation: model only reflects reality up to perturbations

“interesting”: satisfiability does not change under such
perturbations

Well known in numerical analysis (well-posed problems), but in the
context of decidability questions new (independently introduced by
several people since ∼ 2000, usually called robust problem).

13 / 21



Quasi-decidability: Motivation

No algorithm that terminates for all problem instances.

Algorithm that terminates for all interesting problem instances?

”Interesting”?

Observation: model only reflects reality up to perturbations

“interesting”: satisfiability does not change under such
perturbations

Well known in numerical analysis (well-posed problems), but in the
context of decidability questions new (independently introduced by
several people since ∼ 2000, usually called robust problem).

13 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001

: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001

: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.

14 / 21



Quasi-decidability of R

Theorem (Ratschan [2002, 2006])

FO(R,=, <,+,×, exp, sin, . . .) is quasi-decidable.

Assumptions:

I all variables bounded

I f = 0 shortcut for f ≤ 0 ∧ f ≥ 0

Implementation: http://rsolver.sourceforge.net

15 / 21

http://rsolver.sourceforge.net


Quasi-decidability of R

Theorem (Ratschan [2002, 2006])

FO(R,=, <,+,×, exp, sin, . . .) is quasi-decidable.

Assumptions:

I all variables bounded

I f = 0 shortcut for f ≤ 0 ∧ f ≥ 0

Implementation: http://rsolver.sourceforge.net

15 / 21

http://rsolver.sourceforge.net


Methods (Quantifier-Free Case)

Special algorithms for sat and for unsat! Why?

due to undecidability
failure to prove sat, does not imply unsat, and vice versa

satisfiability: statement over one valuation,
good search method suffices (e.g., Newton’s method)

approximation errors (e.g., due to rounding errors) during search
o.k., formal a-posteriori verification [Neumaier, 1990]

non-satisfiability: statement over uncountable set,
symbolic representation needed

16 / 21



Methods (Quantifier-Free Case)

Special algorithms for sat and for unsat! Why?

due to undecidability
failure to prove sat, does not imply unsat, and vice versa

satisfiability: statement over one valuation,
good search method suffices (e.g., Newton’s method)

approximation errors (e.g., due to rounding errors) during search
o.k., formal a-posteriori verification [Neumaier, 1990]

non-satisfiability: statement over uncountable set,
symbolic representation needed

16 / 21



Methods (Quantifier-Free Case)

Special algorithms for sat and for unsat! Why?

due to undecidability
failure to prove sat, does not imply unsat, and vice versa

satisfiability: statement over one valuation,
good search method suffices (e.g., Newton’s method)

approximation errors (e.g., due to rounding errors) during search
o.k., formal a-posteriori verification [Neumaier, 1990]

non-satisfiability: statement over uncountable set,
symbolic representation needed

16 / 21



Methods (Quantifier-Free Case)

Special algorithms for sat and for unsat! Why?

due to undecidability
failure to prove sat, does not imply unsat, and vice versa

satisfiability: statement over one valuation,
good search method suffices (e.g., Newton’s method)

approximation errors (e.g., due to rounding errors) during search
o.k., formal a-posteriori verification [Neumaier, 1990]

non-satisfiability: statement over uncountable set,
symbolic representation needed

16 / 21



Branch and Bound

assumption: bounded domain B for variables (e.g., I1 × · · · × In)

test(φ, B) ∈ {unsat, unknown}

Algorithm BB(φ,B): either returns unsat or runs forever

S ← test(φ,B)
if S = unsat then S
else

let B be such that B = B1 ∪ B2,
non-overlapping

if BB(φ,B1) = BB(φ,B2) = unsat then unsat

Can be interleaved with a satisfiability test.

17 / 21



Branch and Bound

assumption: bounded domain B for variables (e.g., I1 × · · · × In)

test(φ, B) ∈ {unsat, unknown}

Algorithm BB(φ,B): either returns unsat or runs forever

S ← test(φ,B)
if S = unsat then S
else

let B be such that B = B1 ∪ B2,
non-overlapping

if BB(φ,B1) = BB(φ,B2) = unsat then unsat

Can be interleaved with a satisfiability test.

17 / 21



Branch and Bound

assumption: bounded domain B for variables (e.g., I1 × · · · × In)

test(φ, B) ∈ {unsat, unknown}

Algorithm BB(φ,B): either returns unsat or runs forever

S ← test(φ,B)
if S = unsat then S
else

let B be such that B = B1 ∪ B2,
non-overlapping

if BB(φ,B1) = BB(φ,B2) = unsat then unsat

Can be interleaved with a satisfiability test.

17 / 21



Branch and Bound

assumption: bounded domain B for variables (e.g., I1 × · · · × In)

test(φ, B) ∈ {unsat, unknown}

Algorithm BB(φ,B): either returns unsat or runs forever

S ← test(φ,B)
if S = unsat then S
else

let B be such that B = B1 ∪ B2,
non-overlapping

if BB(φ,B1) = BB(φ,B2) = unsat then unsat

Can be interleaved with a satisfiability test.

17 / 21



unsat test

Special case: one single equality

Input: f (x1, . . . , xn) = 0, intervals I1, . . . , In

Interval arithmetic computes interval f (I1, . . . , In) such that
{f (x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊆ f (I1, . . . , In)

if 0 6∈ f (I1, . . . , In) then unsat else unknown

More powerful techniques based on

I advanced interval techniques [Neumaier, 1990, Moore et al.,
2009],

I constraint propagation [Cleary, 1987, Jaulin et al., 2001],

I LP-relaxations [McCormick, 1976, Neumaier, 2004]

18 / 21



unsat test

Special case: one single equality

Input: f (x1, . . . , xn) = 0, intervals I1, . . . , In

Interval arithmetic computes interval f (I1, . . . , In) such that
{f (x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊆ f (I1, . . . , In)

if 0 6∈ f (I1, . . . , In) then unsat else unknown

More powerful techniques based on

I advanced interval techniques [Neumaier, 1990, Moore et al.,
2009],

I constraint propagation [Cleary, 1987, Jaulin et al., 2001],

I LP-relaxations [McCormick, 1976, Neumaier, 2004]

18 / 21



unsat test

Special case: one single equality

Input: f (x1, . . . , xn) = 0, intervals I1, . . . , In

Interval arithmetic computes interval f (I1, . . . , In) such that
{f (x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊆ f (I1, . . . , In)

if 0 6∈ f (I1, . . . , In) then unsat else unknown

More powerful techniques based on

I advanced interval techniques [Neumaier, 1990, Moore et al.,
2009],

I constraint propagation [Cleary, 1987, Jaulin et al., 2001],

I LP-relaxations [McCormick, 1976, Neumaier, 2004]

18 / 21



unsat test

Special case: one single equality

Input: f (x1, . . . , xn) = 0, intervals I1, . . . , In

Interval arithmetic computes interval f (I1, . . . , In) such that
{f (x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊆ f (I1, . . . , In)

if 0 6∈ f (I1, . . . , In) then unsat else unknown

More powerful techniques based on

I advanced interval techniques [Neumaier, 1990, Moore et al.,
2009],

I constraint propagation [Cleary, 1987, Jaulin et al., 2001],

I LP-relaxations [McCormick, 1976, Neumaier, 2004]

18 / 21



unsat test

Special case: one single equality

Input: f (x1, . . . , xn) = 0, intervals I1, . . . , In

Interval arithmetic computes interval f (I1, . . . , In) such that
{f (x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊆ f (I1, . . . , In)

if 0 6∈ f (I1, . . . , In) then unsat else unknown

More powerful techniques based on

I advanced interval techniques [Neumaier, 1990, Moore et al.,
2009],

I constraint propagation [Cleary, 1987, Jaulin et al., 2001],

I LP-relaxations [McCormick, 1976, Neumaier, 2004]

18 / 21



Challenges

In decidable polynomial case, many symbolic techniques available
(Gröbner basis computation, resultants, . . . ).
Sometimes efficient, combine [Passmore and Jackson, 2009].

Traditionally, computer science does not take into account
perturbation, and assumes decision procedures.

Use quasi-decision procedures, that is, algorithms that need not
terminate for non-robust inputs.

19 / 21



Challenges

In decidable polynomial case, many symbolic techniques available
(Gröbner basis computation, resultants, . . . ).
Sometimes efficient, combine [Passmore and Jackson, 2009].

Traditionally, computer science does not take into account
perturbation, and assumes decision procedures.

Use quasi-decision procedures, that is, algorithms that need not
terminate for non-robust inputs.

19 / 21



Literature I

E. Artin. Über die Zerlegung definiter Funktionen in Quadrate.
Hamb. Abh., 5:100–115, 1927.

B. F. Caviness. On canonical forms and simplification. J. ACM, 17
(2):385–396, 1970. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/321574.321591.

J. G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):
125–149, 1987.

J. H. Davenport and J. Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Computation, 5:29–35, 1988.

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied
Interval Analysis, with Examples in Parameter and State
Estimation, Robust Control and Robotics. Springer, Berlin, 2001.

Yuri Matiyasevich. Enumerable sets are diophantine. Doklady
Akademii Nauk SSSR, 191:279–282, 1970.

20 / 21



Literature II
Garth P. McCormick. Computability of global solutions to

factorable nonconvex programs: Part I — convex
underestimating problems. Mathematical Programming, 10(1):
147–175, 1976.

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud.
Introduction to Interval Analysis. SIAM, 2009.

Arnold Neumaier. Complete search in continuous global
optimization and constraint satisfaction. Acta Numerica, 2004.

Arnold Neumaier. Interval Methods for Systems of Equations.
Cambridge Univ. Press, Cambridge, 1990.

Pablo Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, 2000.

Grant Olney Passmore and Paul B. Jackson. Combined decision
techniques for the existential theory of the reals. In Intelligent
Computer Mathematics, 2009.

21 / 21



Literature III
Stefan Ratschan. Continuous first-order constraint satisfaction. In

J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and
V. Sorge, editors, Artificial Intelligence, Automated Reasoning,
and Symbolic Computation, number 2385 in LNCS, pages
181–195. Springer, 2002.

Stefan Ratschan. Efficient solving of quantified inequality
constraints over the real numbers. ACM Transactions on
Computational Logic, 7(4):723–748, 2006.

M.-F. Roy and A. Szpirglas. Complexity of computation of real
algebraic numbers. Journal of Symbolic Computation, 10:39–51,
1990.

Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in
semialgebraic geometry. Mathematische Annalen, 207(2):87–97,
1974.

Volker Weispfenning. The complexity of linear problems in fields.
Journal of Symbolic Computation, 5(1–2):3–27, 1988.

22 / 21


	Quasi-Decidability
	References

