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Motivation I

By far most micro-processors nowadays do not occur in desktop
PC’s but embedded in technical systems (trains, cars, robots, your
washing machine etc.)

Models of technical systems usually in numerical domains.
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Motivation II

Continuous is simpler then discrete!

integers reals

sat. of linear constraints NP-hard polynomial time
sat. of polynomial constraints undecidable decidable

So: to solve discrete problem,
exploit corresponding continuous problem (”relaxation”).

Example: MILP
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Example

x2 + y2 − 1 = 0 ∧ y − x2 = 0
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Problem Definition

Given: formula in certain sub-class of FO(R,=,≤, <,+,×, sin, . . . )

Decide: sat/unsat

+ certificate (if possible)

Subclasses: quantifier-free, polynomial, linear, ...
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Contents

I Certificates

I Decidability and Complexity

I Let’s solve undecidable problems!
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Certificates for Satisfiability

Quantifier-free case: (e.g., x2 = 2)

Certificate: satisfying valuation (solution)

But: how to represent solution?

Linear case: rational number (e.g., 3x = 2 x 7→ 2
3)

Polynomial case:

I in general, no expression in terms of roots (Abel-Ruffini
theorem),

I real algebraic numbers (unintuitive, inefficient [Roy and
Szpirglas, 1990]), x < y?

In general: (arbitrary precise) approximation 5 7→ 4.6557 . . .
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Certificates for Unsatisfiability

Example: p(x) < 0

, certificate: polynomial q s.t. q2 = p

Works always? Can be generalized?

Solution to Hilbert’s 17th problem:
Every polynomial that is non-negative on Rn is

a sum of squares of rational functions [Artin, 1927]

Sums of squares of polynomials do not suffice?

No: Motzkin form 1 + x4y2 + x2y4 − 3x2y2

However: all univariate polynomials, and all polynomials with
degree up to 2 can be written as SOS
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Special Case: System of Polynomial equations

f1(x) = 0, . . . , fr (x) = 0 does not have a solution iff there exist

I polynomials a1, . . . , ar , and

I sums of squares of polynomials d ,

such that ∑
i

ai fi + d + 1

is the polynomial 0.

for a given solution, the expression cannot be zero

Example: f0 ≡ 1: a0 ≡ −1, d ≡ 0

System of polynomial equations and inequalities:
Positivstellensatz [Stengle, 1974]
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Discussion

Several further interesting and widely used special cases (e.g.,
S-procedure)

How to compute such certificates?

I choose template polynomials
∑

ai~xi

I solve for the coefficients (in polynomial time, using
SDP) [Parrilo, 2000]

Necessary degree of template polynomials:

I in linear case: 0 (Farkas Lemma), we just have to solve a
linear problem

I otherwise: may be huge! usually is incrementally increased

What about certificates after adding sin, . . . ?
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Decidability and Complexity

Theorem (A. Tarski, 1930ies): FO(R,=, <,+,×) allows
quantifier elimination, and hence is decidable.

However: doubly exponential in number of quantifier alternations,
exponential in number of variables [Davenport and Heintz, 1988,
Weispfenning, 1988]

What about FO(R,=, <,+,×, sin)?

undecidable (would allow encoding of polynomial Diophantine
equations, whose solution undecidable [Matiyasevich, 1970])

Even equivalence of terms to zero is undecidable [Caviness, 1970],
and hence also equivalence of terms (so, limited symbolic
computation etc., no Nelson-Oppen, no Positivstellensatz-type
certificates, )

Situation hopeless?
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Quasi-decidability: Motivation

No algorithm that terminates for all problem instances.

Algorithm that terminates for all interesting problem instances?

”Interesting”?

Observation: model only reflects reality up to perturbations

“interesting”: satisfiability does not change under such
perturbations

Well known in numerical analysis (well-posed problems), but in the
context of decidability questions new (independently introduced by
several people since ∼ 2000, usually called robust problem).
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Quasi-decidability: Definition

Constraints:

x2 ≤ 0 x2 ≤ −0.00001: not robust

x2 ≤ 1 x2 ≤ 1.00001: robust

d(φ, φ′): if same up to constants then maximal distance of
constant, otherwise ∞

Constraint φ robust iff
there is an ε such that

for all φ′ with d(φ, φ′) ≤ ε, φ and φ′ are equi-satisfiable

Problem quasi-decidable iff
there is an algorithm that

correctly checks satisfiability and
terminates for all robust problem instances.
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Quasi-decidability of R

Theorem (Ratschan [2002, 2006])

FO(R,=, <,+,×, exp, sin, . . .) is quasi-decidable.

Assumptions:

I all variables bounded

I f = 0 shortcut for f ≤ 0 ∧ f ≥ 0

Implementation: http://rsolver.sourceforge.net
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Methods (Quantifier-Free Case)

Special algorithms for sat and for unsat! Why?

due to undecidability
failure to prove sat, does not imply unsat, and vice versa

satisfiability: statement over one valuation,
good search method suffices (e.g., Newton’s method)

approximation errors (e.g., due to rounding errors) during search
o.k., formal a-posteriori verification [Neumaier, 1990]

non-satisfiability: statement over uncountable set,
symbolic representation needed
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Branch and Bound

assumption: bounded domain B for variables (e.g., I1 × · · · × In)

test(φ, B) ∈ {unsat, unknown}

Algorithm BB(φ,B): either returns unsat or runs forever

S ← test(φ,B)
if S = unsat then S
else

let B be such that B = B1 ∪ B2,
non-overlapping

if BB(φ,B1) = BB(φ,B2) = unsat then unsat

Can be interleaved with a satisfiability test.
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unsat test

Special case: one single equality

Input: f (x1, . . . , xn) = 0, intervals I1, . . . , In

Interval arithmetic computes interval f (I1, . . . , In) such that
{f (x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊆ f (I1, . . . , In)

if 0 6∈ f (I1, . . . , In) then unsat else unknown

More powerful techniques based on

I advanced interval techniques [Neumaier, 1990, Moore et al.,
2009],

I constraint propagation [Cleary, 1987, Jaulin et al., 2001],

I LP-relaxations [McCormick, 1976, Neumaier, 2004]
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Challenges

In decidable polynomial case, many symbolic techniques available
(Gröbner basis computation, resultants, . . . ).
Sometimes efficient, combine [Passmore and Jackson, 2009].

Traditionally, computer science does not take into account
perturbation, and assumes decision procedures.

Use quasi-decision procedures, that is, algorithms that need not
terminate for non-robust inputs.
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