The SMT-LIB 2 Standard:

Overview and Proposed New Theories

Philipp Rimmer

Oxford University Computing Laboratory
philr@comlab.ox.ac.uk

Third Workshop on
Formal and Automated Theorem Proving and Applications
Belgrade, Serbia
29 January 2010

1/23

philr@comlab.ox.ac.uk

Overview of SMT-LIB 2, comparison with version 1
@ Joint work by somebody else

Set-theoretic datatypes for the SMT-LIB
@ Finite sets, lists, maps, relations
@ Joint work with Daniel Kroening, Georg Weissenbacher

Floating-point arithmetic for the SMT-LIB
@ Joint work with Thomas Wahl

The SMT-LIB Standard

SMT — Satisfiability Modulo Theories

SMT-LIB is . ..

@ a standardised input format for SMT solvers (since 2003)

@ a standardised format for exchanging SMT problems
@ a library of more than 90 000 SMT benchmarks

@ the basis for the annual SMT competition
(this year: on FLoC)

Relevant for verification + program analysis tool:

@ Krakatoa, Caduceus, ESC/Java2, Spec#, VCC, Havoc,
Pex, CBMC, F7, ...

Example in SMT-LIB Format (Version 1)

(benchmark Ensures_Q_ noinfer_2
:source { Boogie/Spec# benchmarks. }
:logic AUFLIA

rextrapreds ((InRange Int Int))
rextrafuns ((this Int))
rextrafuns ((intAtLeast Int Int Int))
rassumption
(forall (?t Int) (?u Int) (?v Int)
(implies (and (subtypes ?t ?u) (subtypes ?u ?v)) (subtypes 2t ?v))

:pat (subtypes ?t ?u) (subtypes ?u ?v))

:formula
(not (implies (implies (implies (implies
(and
(forall (2o Int) (?F Int)
(implies (and (= 20 this) (= ?F X)) (= (select2 H 20 ?F) 5)))
(implies
(forall (?o Int) (?F Int)
(implies (and (= 2o this) (= ?F X)) (= (select2 H 20 ?F) 5)))

(implies true true)))
= ReallylastGeneratedExit_correct Smt.true))
(= ReallylLastGeneratedExit_correct Smt.true))
(= start_correct Smt.true))
(= start_correct Smt.true)))) 4/93

(

-LIB Format (Version 1)

(benchmark Ensures_Q_noinfer_2

:source
:logic
rextrapreds
rextrafuns

rextrafuns

rassumption

:formula

Preamble + problem logic/category

Problem signature: sorts, functions, predicates

Premises + axioms

Verification condition

Versions of SMT-LIB

Latest “stable” version 1.2
@ Introduced 2006

@ Supported by virtually all SMT solvers
@ Theories: arrays, bit-vectors, integers, reals

Upcoming version 2.0

@ Proposed July 2009’

@ Improvements + simplifications over 1.2 ... next slides
@ More flexible w.r.t. combination of theories

@ But: semantics similarto 1.2

"Working group: Clark Barrett, Sylvain Conchon, Bruno Dutertre, Jim
Grundy, Leonardo de Moura, Albert Oliveras, Aaron Stump, Cesare Tinelli 5/23

The Brave New World

(of SMT-LIB 2)

1. Sort Constructors

SMT-LIB 1

Only nullary sort constructors:

:sorts (Int)

:extrasorts (U T)

Types are atomic:

rextrafuns
((£ T T))

SMT-LIB 2

Sort constructors of any arity:

:sorts ((Array 2))
rextrasorts ((List 1)
U T)

Types can be compound:

rextrafuns
((£ T (Array U T)))

2. Theory Schemas

SMT-LIB 1

Theories are monomorphic:

(theory Int_Arrays
:sorts (Int Array)
: funs
((select Array Int Int)
(store Array Int Int
Array)

SMT-LIB 2

Parametric polymorphism
in theories:

(theory Array
:sorts ((Array 2))
: funs
((par (X Y)
(select
(Array X Y) X Y))
(par (X Y)
(store
(Array X Y) X Y
(Array X Y)))

3. Symbol Overloading

SMT-LIB 1

Unique operator names:

:sorts (Int)

:funs ((~ Int Int)
(= Int Int Int)
(+ Int Int Int))

:sorts (BitVec)
:funs
((bvneg BitVec BitVec))

SMT-LIB 2

Symbol overloading:

:sorts
:funs (

(Int)

(= Int Int)

(= Int Int Int)
(+ Int Int Int))

:sorts (BitVec)
:funs ((— BitVec BitVec))

4. No Formula/Term Distinction

SMT-LIB 1 SMT-LIB 2

Formulae # terms, Bool is simply a sort:
predicates # functions:

rextrapreds :extrafuns
((divides Int Int)) ((divides Int Int Bool)
rextrafuns (prime (Array Int Bool))

((succ Int Int))

Only terms can be and, or, =, ...
function/predicate arguments are just functions

Work-arounds:
reflection, ite operator

10/23

5. Standardised Command Language

Text-based interface to SMT solvers:

> (set-logic AUFLIA)
> (declare-fun a () Int)
> (declare-fun b () Int)
> (assert (= (x 8 a) (x 4 b)))
> (push)
> (assert (forall ((x Int))
(not (= b (* 2 x)))))
> (check-sat)
unsat
> (pop)

@ Apparently:
Interface will replace the old benchmark file format

11/23

Proposals for Additional
SMT-LIB 2 Theories

Theories of Set-Theoretic Datatypes

We propose to add datatypes inspired by VDM-SL

@ Tuples

@ Lists

@ (Finite) Sets

@ (Finite) Partial Maps

Main applications for us:
@ Bounded Model Checking for C, C++ (CBMC)

@ Model-based test-case generation
(UML/OCL, Simulink/Stateflow, Lustre)

@ Analysis of requirements + architecture specifications
@ System development in Event-B, VDM

13/23

SMT-LIB 2 Theory Schemas

Tuples Sets Lists Maps
(Tuplep (Set T) (List T) (Map S T)
Ty ... Tp)
tuple emptySet (| nil []| emptyMap 0

(X1,...,Xp) | insert cons X:uL|apply f(x)
project MU {x} | head overwrite
Xk | in € | tail <
product subset C | append ™ | domain
My x---x M, | union U | length |/| | range
inter N | nth Iy | restrict «
setminus \ | inds subtract <
card M| {1,.. |}
elems
{hyoooyd

14/23

Example: Verification Cond. Generated by VDMTools

In VDM-SL notation:

VI 1(Z),i: N. (i € inds(/) = Vj € inds(/) \ {i}. j € inds(/))

In SMT-LIB notation:

(forall ((1 (List Int)) (i Int))
(implies
(and (>= 1 0) (in 1 (inds 1)))
(forall (j Int)
(implies
(in j (setminus (inds 1)
(insert i emptySet)))

(in j (inds 1))))))

15/23

Status of the Proposal

@ Syntax + Semantics of theories is defined
= In collaboration with Cesare Tinelli

@ Parser + type checker + converter to SMT-LIB 1 available
(using a rather naive axiomatisation of the datatypes)

@ Meaningful sublogics still to be identified

@ We have a small initial collection of benchmarks
= More to be converted from Event-B VCs
= Further benchmarks would be welcome

http://www.cprover.org/SMT-LIB-LSM/

16/23

http://www.cprover.org/SMT-LIB-LSM/

Floating-Point Arithmetic (FPA)

Binary floating-point numbers (IEEE 754-2008)

F = {(-1)-m-2°|(m,e) € E,s € {0,1}}
— {NaN, +50,—00,0".. }

where:
S ... sign
m ... mantissa/significand
e ... exponent

@ Standard mathematical operations + rounding
(defined more or less ambiguously in IEEE 754-2008)

@ Important for embedded software, control software, etc.

17/23

A Theory of Floating-Point Arithmetic (FPA)

So far: no SMT solvers with FPA support

Correct reasoning about FPA is hard

@ Precise encoding: hard for automatic solvers
(but works for interactive proof assistants)

@ Interval arithmetic: sound but imprecise, no models
(bad for test cases)

@ Rational arithmetic: only an approximation
(unsound in certain settings)

Main applications for us:
@ Bounded model checking for Simulink/Stateflow
@ Test-case generation

18/23

Abstraction for Floating-Point Arithmetic [FMCAD’09]

New reasoning approach:

@ Precise SAT encoding combined with mixed
over/under-approximation

@ Outperforms naive SAT encoding + can generate models

@ Prototypical implementation as part of CBMC

@ Planned: move implementation to an SMT solver
= SMT-LIB interface is needed!

19/23

An SMT-LIB Theory of FPA (work in progress)

Goals

@ Model FPA core that is relevant for reasoning + verification
Not considered:
Exact error handling, bit-precise encoding, . ..

@ Precise + concise definition of FPA semantics
@ Useable syntax

http://www.cprover.org/SMT-LIB-Float/

20/23

http://www.cprover.org/SMT-LIB-Float/

Example: FPA Problem in SMT-LIB

cextrafuns ((x (ind FP 11 53))
(y (ind FP 11 53)))
:problem
(exists ((z (ind FP 11 53)))
(= (+ roundTowardZero x z) Vy))

@ 64-bit floating-point arithmetic (double precision)
= 11 bit exponent, 53 bit significand

@ ind notation is used for indexed types
= (ind FP 11 53) means FPqq 53

@ + is ternary: first argument is rounding mode

21/23

Conclusion

@ Overview of SMT-LIB 2
@ Datatypes of sets, lists, maps, relations
@ Floating-point arithmetic

Trade-off when defining theories:
@ Generality — good for users
@ Implementation complexity
@ Decidability

— good for tool writers

= We hope that we have found a good compromise
= Feedback is welcome!

22/23

Thanks for your attention!

Don’t forget about . . . Ad

Logics for Systems Analysis — LfSA’10

Workshop affiliated with LICS and IJCAR at FLoC
July 15th 2010

http://www.ls.cs.cmu.edu/LfSA10/

23/23

http://www.ls.cs.cmu.edu/LfSA10/

