Decision Procedures for Algebraic
Data Types with Abstractions

Philippe Suter, Mirco Dotta
and Viktor Kuncak

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Verification of functional programs
@)

proof

/

counterexample
(input, trace)

sealed abstract class Tree
case class Node(left: Tree, value: Int, right: Tree) extends Tree
case class Leaf() extends Tree

object BST {
def add(tree: Tree, element: Int): Tree = tree match {
—

case Node(l, v, r) if v > element = Node(add(l, element), v, r)

case Node(l, v, r) It v < element = Node(l, v, add(r, element))

== element = tree
ensuring (result # Leaf())

}

J (tree = Node(l, v, r) Av > element A result # Leaf())
= Node(result, v, r) # Leaf()

We know how to generate verification
conditions for functional programs

Proving verification conditions

(tree = Node(l, v, r) A v > element A result # Leaf())
= Node(result, v, r) # Leaf()

D.C. Oppen, Reasoning about Recursively
Defined Data Structures, POPL’78

G. Nelson, D.C. Oppen, Simplification by
Cooperating Decision Procedure, TOPLAS '79

Previous work gives decision procedures that
can handle certain verification conditions

sealed abstract class Tree
case class Node(left: Tree, value: Int, right: Tree) extends Tree
case class Leaf() extends Tree

object BST {
def add(tree: Tree, element: Int): Tree = tree match {
case Leaf() = Node(Leaf(), element, Leaf())
case Node(l, v, r) if v > element = Node(add(l, element), v, r)
case Node(l, v, r) if v < element = Node(l, v, add(r, element))
case Node(l, v, r) if v == element = tree
ensuring (content(result) == content(tree) U { element })}

fdef content(tree: Tree) : Set[Int] = tree match { A
case Leaf() > 0
case Node(l, v, r) = content(l) U { v } U content(r)

}Q Y,

Complex verification condition

Set Expressions

—[t, = Node(t,, e,, t3)}
A content(t,) = content(t,) U {e, }
A content(Node(t,, e,, t5)) # content(tlj U{e, }]_ s

where ?

def content(tree: Tree) : Set[Int] = tree match { .
case Leaf() = 0 '
case Node(l, v, r) = content(l) U { v } U content(r) '

}

-

v

—> Algebraic Data Types Recursive Function

Our contribution

-

o

Decision procedures for extensions of algebraic
data types with certain recursive functions

J

Formulas we aim to prove

Quantifier-free Formula

/ t, = Node(t,, e, t3) A |

A content(t,) = content(tz{ e, }
A content(Node(t,, e, t3)) # content(tl{ e, }/

o
where
def content(tree: Tree) :[Set[lnt]]= tree match {

| caseleaf()=> 0
case Node(l, v, r) = content(l){ Y content(r)

)

-> Generalized Fold Function Domain with a Decidable Theory

General form of our recursive functions

empty: C
combine: (C, E,C) > C

def content(tree: Tree) : Set[Int] = tree match {
case Leaf() = @
case Node(l, v, r) = content(l) U { v } U content(r)

)

Scope of our result - Examples

Tree content abstraction, as a:

Set [Kuncak,Rinard’07]
Multiset [Piskac,Kuncak’08]
List [Plandowski’04]
Tree size, height, min [Papadimitriou’81]

Invariants (sortedness,...) [Nelson,Oppen’79]

How do we prove such formulas?

Quantifier-free Formula

/ t, = Node(t,, e, t3) A |

A content(t,) = content(tz{ e, }
A content(Node(t,, e, t3)) # content(tl{ e, }/

o
where
def content(tree: Tree) :[Set[lnt]]= tree match {

| caseleaf()=> 0
case Node(l, v, r) = content(l){ Y content(r)

)

-> Generalized Fold Function Domain with a Decidable Theory

Separate the Conjuncts

[tl = Node(t,, e,, t3)J
A content(t,) = content(t,) U { e, }
A content([Node(tm e, t_,})})’# content(t,) U {e,}

—>[t, = Node(t,, e, t;) At = Node(t,, e, t3) /\]
{ c4=c2U{e2}/\c5¢c1U{e2}/\}
> ¢, = content(t;) A ... A ¢ = content(t.)

/ \ .
/N . 4
| S
tl /\4/\ = >
2 tz S
AIA . . .
3
v,
content C4 — / \C
/ LzJ\ 2
") C,

c,={4}U{2}U@PUc,Uc,
4

Overview of the decision procedure

tree constraints from the input formula set constraints from the input formula
A t. = Node(t,, e, t5)
mappings from the input formula
c, = content(t),i€{1, .. 5}

s) D

c,=c,U{e,}

' N ANc.zc,U{e,}

c,=c,U{e; }Uc, >/\c1=c2U{e1}Uc3

/\c5=c4U{e1}Uc3) \/\c5=c4u{e1}Uc3/

additional derived constraints resulting formula

The resulting formula is in the Decision
decidable theory of sets Procedure for Sets

What we have seen is a simple
correct algorithm

But is it complete?

A verifier based on such procedure

val c1 = content(t1)
val c2 = content(t2)
if (t1 #1t2){
if (c1==0){
assert(c2 # Q)
X = c2.chooseElement

}
}

Warning: possilible assertion violation

[c, = content(t,;) A c, = content(t,) At; Z2t, Ac;, =D Ac,=0 }

Source of incompleteness

[c, = content(t,) Ac, = content(tz)c1 =PAC,=0 }

l t, # ot
| N/
 =0Ac=0 > 0)

Models for the formula in the logic of sets must
not contradict the disequalities over trees

How to make the algorithm complete

e Case analysis for each tree variable:
—is it Leaf ?
— Is it not Leaf ?

/cl = content(t;) A c, = content(t,) At #t, Ac,=0Ac,=0 \

1 AT
—A—t—-—N-eeIe(—t—e—l = 3T E4) Aty = Neele(ES, €5 Es)
\A—t—N-eele(-t—e—t—)—A—t—-—Eea-f—l 37 STy /

This gives a complete decision procedure for
the content function that maps to sets

What about other content functions?

Tree content abstraction, as a:
Set

Multiset
List
Tree size, height, min

Invariants (sortedness,...)

Sufficient Surjectivity

How and when we can have
a complete algorithm

Choice of trees is constrained by sets

tree constraints from the input formula set constraints from the input formula
A t. = Node(t,, e, t5)
mappings from the input formula
c, = content(t),i€{1, .. 5}

s) B

c,=c,U{e,}

v . ANcszc,U{e,}

,=c,U{e U [€= Ac;=c,U{e;}Uc

/\c5=c4U{e1}Uc3) \/\c5=c4u{e1}Uc3/

additional derived constraints resulting formula

Decision

Procedure for Sets

Inverse images

* When we have a model for c,, c,, ... how can
we pick distinct values for t;, t,,... ?

t. € content!(c) & ¢ =content(t)

a

a-l

The cardinality of a! (c,) is what matters.

‘Surjectivity’ of set abstraction

¢ content?! Q
>

{ 1’ 5 } content ™

|content (@)]| =1
|content ({1, 5})| = oo

In-order traversal

v inorder- R [1’ 2’ 4’ 7]

‘Surjectivity’ of in-order traversal

[] inorder! R Q

[1.5] inorder! R

(2n)!

linorder-(list)| =
(n+ 1)!n!

(number of trees of size n = length(list))

More trees map to longer lists

A

linorder-i(list) |

>

length(list)

I
1
l
I
I

An abstraction function a (e.g. content, inorder) is
sufficiently surjective if and only if, for each
number p > 0, there exist, computable as a
function of p:

- a finite set of shapes S,
- a closed formula M, in the collection theory
such that M (c) implies [a*(c)[>p

such that, for every term t, M, (a(t)) or s(t)in S,..

Pick p sufficiently large.
Guess which trees have a problematic shape.
Guess their shape and their elements.
By construction values for all other trees can be found.

Generalization of the Independence of
Disequations Lemma

For a conjunction of n disequalities over tree
terms, if for each term we can pick a value
from a set of trees of size at least n+1, then we

can pick values that satisfy all disequalities.

We can make sure there will be
sufficiently many trees to choose from.

Sufficiently surjectivity holds in practice

ﬂheorem: \

For every sufficiently surjective abstraction our
procedure is complete.

Theorem:
The following abstractions are sufficiently

surjective:
set content, multiset content, list (any-order),

Eree height, tree size, minimum, sortedness/

A complete decision procedure for all these cases!

Related Work

G. Nelson, D.C. Oppen, Simplification by
Cooperating Decision Procedure, TOPLAS 79

V. Sofronie-Stokkermans, Locality Results for
Certain Extensions of Theories with Bridging
Functions, CADE "09

Some implemented systems:
ACL2, Isabelle, Coq, Verifun, Liquid Types

Decision Procedures for Algebraic
Data Types with Abstractions

Reasoning about functional programs
reduces to proving formulas

Decision procedures always find a proof or a
counterexample

Previous decision procedures handle
recursion-free formulas

We introduced decision procedures for
formulas with recursive fold functions

Thank you !

Extra Slides

Decision procedure for data structure hierarchy

tree bag (multiset)

mcontent (C‘) 2 C‘D ‘
b . J

setof
J msize set

7/

~\

ssize

Supports all natural operations 3

on trees, multisets, sets, and homomorphisms between them

When we are not complete

* When a! does not grow
* The only natural example we found so far:
when there is no abstraction!

— Map trees into trees by mirroring them or
— Reversing the list

Sortedness

End of extra slides

Stop clicking

An abstraction function a is sufficiently surjective
if and only if, for each number p > 0, there exist,
computable as a function of p:

- a finite set of shapes S,

- a closed formula M, in the-collection theory
such that M (c) implie> p

such that, for every term t, M, (a(t)) or s(t) in S,..

AN
/
<
AN
/

An abstraction function a is sufficiently surjective
if and only if, for each number p > 0, there exist,
computable as a function of p:

- a finite set of shapes S,
- a closed formula M, in the collection theory
such that M, (c) implies [a*(c)[>p

such that, for every term t, M, (a(t)) or s(t) in S,..

This definition implies:

lim inf [al(aft))] =eo
) €S,

p—oo S (t

lim i)n;sp [at(aft))] = oo

p—oo S (t

To copy-paste

1
VRN
/N

We,WAVU=2FEFEE=>-> aWalw
S& D a

={0,7}VUc

={2,4}Uc,Uc

Trees Trees Trees

\ / \
/ Y /
Vanth /A
7/ \ /
~—\
/7 \

Overview of the Decision Procedure

t, = Node(t,, e, t;) At = Node(t,, e, t;)
ANtz AL 2, A Ae =6,

unification
l c, = content(t,)

t, = Node(t,, e, t;) — > =content(Node(t,, e,, t;5))
A ts = Node(t,, ey, t3) > =content(t,) U {e, } U content(t,)

r =c,U{e;}Uc

def content(tree: Tree) : Set[Int] = tree match {

case Leaf() = @ i

case Node(l, v, r) = content(l) U {v } U content(r) — C; = content(t),i€{1,..,5}
}

Ghost Variables?

object BST {
def contains(tree: Tree, element: Int): Tree = tree match {
case Leaf() => false
case Node(l, v, r) if v > element => contains(l, element)
case Node(l, v, r) if v < element => contains(r, element)
case Node(l, v, r) if v == element => true
} ensuring (result <=> element € tree.content)

)

Requires stating and proving an invariant such as:

V (| : Leaf) .
l.content = @
V (n: Node).
n.content = n.left.content U { n.element } U n.right.content

sealed abstract class Tree { val content: Set[Int] }
case class Node(content: Set[Int], left: Tree, value: Int, right:
Tree) extends Tree

case class Leaf() extends Tree { val content = 0 }

object BST {
def add(tree: Tree, element: Int): Tree = tree match {
case Leaf() => Node({ element }, Leaf(), element, Leaf())
case Node(l, v, r) if v > element =>
Node(tree.content U { element }, add(l, element), v, r)
case Node(l, v, r) if v < element =>
Node(tree.content U { element }, |, v, add(r, element))
case Node(l, v, r) if v == element => tree
} ensuring (result.content == tree.content U { element })

}

e Essentially duplicates the code

Our Approach: No Ghosts!

* |n a functional setting, specification variables
are just another view on the same data

* |dea: provide the view explicitly, in the PL

Completeness

In general, we need a way to encode:

s p
Lzt At ZELA .
Aci=a(t)Ac=a(t)A..
N J

in the domain theory.

Sufficient Surjectivity

- For each tree t in the formula, guess its shape in S, or
write M, (t)

- Populate the shapes with fresh variables

N /N
/ \ g /fz\ f4
Panth Panuth
f3
/7 \

- Trees with different shapes are different by
construction.

- For the other ones, create a disjunction of disequalities
over their elements

Sufficient Surjectivity

- All the trees such that M (t) can be made
distinct and still map to the same collection

Independence of Disequations Lemma:

For a conjunction of n disequalities of tree
terms, if for each term we can pick a value
from a set of trees of size at least n, then we
can pick values that satisfy all disequalities.

Sufficient Surjectivity

