Automated Proving in Geometry using Gröbner bases in Isabelle/HOL

Danijela Petrović Filip Marić Predrag Janičić {danijela,filip,janicic}@matf.bg.ac.rs

Department of Computer Science Faculty of Mathematics University of Belgrade

Fourth Workshop on Formal and Automated Theorem Proving and Applications

- Motivation example
- 2 Term representation of geometry constructions
- 3 Algorithm
- Conclusion and future work

- Motivation example
- 2 Term representation of geometry constructions
- 3 Algorithm
- Conclusion and future work

 The goal is to show that bisetors of the sides of triangle are intersecting in one point

- A(0, 0), B(0, c), C(a, b)
- $O_1(x_1, y_1) = p_1 \cap p_2$
- $p_1 = x_1 \frac{c}{2}$
- $p_2 = \frac{c-a}{b}x_1 y_1 + \frac{b^2 c^2 + a^2}{2b}$

- A(0, 0), B(0, c), C(a, b)
- $O_2(x_2, y_2) = p_1' \cap p_3$
- $p_1' = x_2 \frac{c}{2}$
- $p_3 = \frac{a}{b}x_2 + y_2 \frac{b}{2} \frac{a^2}{2b}$

- A(0,0), B(0,c), C(a,b)
- $O_1(x_1, y_1) = O_2(x_2, y_2)$

•
$$G = \{x_1 - \frac{c}{2}, \frac{c-a}{b}x_1 - y_1 + \frac{b^2 - c^2 + a^2}{2b}, x_2 - \frac{c}{2}, \frac{a}{b}x_2 + y_2 - \frac{b}{2} - \frac{a^2}{2b}\}$$

The problem ${\cal O}_1(x_1,y_1)={\cal O}_2(x_2,y_2)$ is now to show that polynomials

$$g_1 = x_1 - x_2$$
 and $g_2 = y_1 - y_2$

belong to the ideal generated over the set G.

We can do that by calculating the Gröbner basis G' of the set G and showing:

i)
$$g_1 = x_1 - x_2 \stackrel{*}{\to}_{G'} 0$$

ii)
$$g_2 = y_1 - y_2 \stackrel{*}{\to}_{G'} 0$$

• New set:
$$G' = \{p_1, p_2, p_3, p'_1, S_1, S_2\} = \{x_1 - \frac{c}{2}, \\ \frac{c-a}{b}x_1 - y_1 + \frac{b^2 - c^2 + a^2}{2b}, \\ \frac{a}{b}x_2 + y_2 - \frac{b}{2} - \frac{a^2}{2b}, \\ x_2 - \frac{c}{2}, \\ -y_1 + \frac{b}{2} + \frac{a^2}{2b} - \frac{ac}{2b}, \\ y_2 - \frac{b}{2} - \frac{a^2}{2b} + \frac{ac}{2b}\}$$

- We can show: $g_1 = x_1 x_2 \stackrel{*}{\to}_{G'} 0$
- We can show: $g_2 = y_1 y_2 \stackrel{*}{\rightarrow}_{G'} 0$

- Motivation example
- 2 Term representation of geometry constructions
- 3 Algorithm
- 4 Conclusion and future work

Term representation of geometry constructions

- We use term representation for geometry constructions
- Each object has term representation, for example:
 - line = Line point point
 - or: line = Bisector point point
 - etc.
- Each statement has term representation, for example:
 - In point line
 - Equal point point
 - etc.

- Motivation example
- 2 Term representation of geometry constructions
- 3 Algorithm
- 4 Conclusion and future work

Algorithm

• Term representation of our example:

```
Equal(
Intersect(Bisector(Point 1, Point 2), Bisector(Point 2, Point 3))),
Intersect(Bisector(Point 1, Point 2), Bisector(Point 1, Point 3))))
```

- Algorithm for making two set of polynomials from term representation of geometry construction
- ullet From the second set we get Gröbner basis G'
- ullet From the first set we get polynomials that should go to 0 by polynomial reduction with elements from G'

Algorithm

- Algorithm is recursive, for each object we add new variables and call function to read the rest of the term
- For examle:
 - In point_t line_t
 - add variables $\times 1$ i y1 coordinates for point (for examle $O(x_1,y_1)$)
 - add variables a1 i b1 coefficients for line (for example $p=a_1\cdot x+b_1\cdot y+1)$
 - call point_poly(point_t, x1, y1)
 - call line_poly(line_t, a1, b1)
 - we add in first set the polynomial: a1x1 + b1y1 + 1
- For representing polynomials in Isabelle we use work of Christian Sternagel and Ren Thiemann - Executable Multivariate Polynomials

- Motivation example
- 2 Term representation of geometry constructions
- 3 Algorithm
- 4 Conclusion and future work

Conclusion and future work

- Including more geometry objects
- Implementing algorithm in wider range of geometry statements to show their corectness
- Using implemented method for calculating Gröbner basis in Isabelle
- Implementing Buchberger's algorithm (with heuristics) for transforming the set of polynomials in Gröbner basis in some imperative language (for examle C) and proving its corectness in Isabelle