An excursion Into the Proofs-as-Programs Correspondence

Hugo Herbelin

4 February 2011

4™ workshop on Formal and Automated Theorem Proving and Applications

Belgrade

Outline

- Proofs, truth and computation

- Brouwer-Heyting-Kolmogorov's intuitionism

- Curry and Howard's revelations

- Martin-Lof's exploitation of Howard's revelation
- Classical logic: Griffin's revelation

- Writing sequent calculus proofs as programs

Proofs, truth and computation

Vpgr (p=q=r1)=(p=>q = (p=>r7)

Vnmp 3(m + 2n) — 4m = 6n —m

VnO+2Xn=n-+n

Vn > 2 Vpgr (p" + q" # ")

(Vn 3pq (prime(p) A prime(q) Ap+q = 2n) V (3In Vpq (prime(p) Aprime(q) = p+q # 2n)

Brouwer-Heyting-Kolmogorov intuitionism (made explicit in the 30's)

A proof of A A B is given by presenting a proof of A and a proof of B

A proof of AV B is given by presenting either a proof of A or a proof of B

A proof of A = B is a construction which transforms any proof of A into a proof of B
A proof of dx A is given by presenting a proof of A(n) for some n

A proof of VY A is given by a construction which presents a proof of A(n) for any n

Kleene's realisability (1945)

Indeed, from a proof of - VYn3dm P(n, m) one can extract a computable and terminating function

f Ny = Ny such that for all n, = P(n, f(m)).

Indeed, from a proof of - Vn(—P(n) V P(n)) one can extract a computable and terminating
function f : Ny = {0, 1} such that for all n, f(n) = 0 implique = =P(n) and f(n) = 1 implique
= P(n).

Curry's revelation (around 1958)

The axiom of Hilbert-style logic are the same as the axioms of combinatory logic

Spr T p=q=2r)=p=>q¢=>p=>r)
Ky, :p=q=p
MP,, : from p = ¢ and p one gets ¢

p,q -

Natural deduction and A-calculus (Howard, 1968)

= a A B = P(ﬂ

| =1(a,p) | =E (9 | A= B
’ V[(SE,p) ’ VE(pa t) ’ YV A(ZU)
[3t p) | Fe(p, z,a,q) | 3z A(x)
[Vilp) | \/E(Z% ai, p1, Gz, pa) | AVB

| Ar(p, @) | Np(p) | AAB

| Lep |1
Ty | T

p,q -

p,q -

Natural deduction and A-calculus (Howard, 1968)

| S
U@

1 (a,p) |=E (p,q)
1(z,p) | Ve(p, 1)

1t p) | 3e(p, x. a,q)
H(p) | VE(P; ai, p1, Gz, P2)
1(p,q) | N&(p)

EP

I

> < W<

—H

a

Aa.p | pq
Ax.p | pt

(t,p) | dest p as (x,a) in ¢
ti(p) | case p of [a; = p1|as = po

(P, q) | mi(p)
abort p

0

A B

A B

P(t)
A= DB
Vo A(z)
Jz A(x)
AV B
ANB

P(#)
A— B
[z A(x)
Yo A(z)
A+ B
Ax B
unit
void

p,q -

p,q -

Natural deduction and A-calculus (Howard, 1968)

UQ

a

Aa.p|pg
Ax.p | pt

(t,p) | dest p as (x,a) in ¢
Li(p) | case p of [a; = p1|as = p9
(p,q) | mi(p)

abort p

0

L <C

<

i
1

>

EDP
I

—

1 (a,p) |=E (p,q)
1(z,p) | Ve(p,)

1(t,p) | Ie(p, z,a,q)

(p) | \/E(Pa ai, pi, Gz, P2)
1(p,q) | Np(p)

A B

)

A B

P(t)
A= DB
Vo A(z)
Jz A(x)
AV B
ANB

P(#)
A— B
[z A(x)
Yo A(z)
A+ B
Ax B
unit
void

D, q

Natural deduction and A-calculus (Howard, 1968)

= a A,B = P(t)
| Xa.p|pq | A=2B
| Az.p|pt | V2 A(z)
| (t,p) | dest p as (z,a) in g | dz A(x)
| ui(p) | case p of a1 = p1 | as = po | AV B
| (p.q) | mi(p) | AAB
| abort p L
| |

0

10

(a:A)eTl
'Fa: A

[a:AFp: B '-p: A= B I'Fqg: A
I'FXap: A= B I'Fpqg: B

I'Fp:A(x) xfresh T'Fp:VorAz)

['FAx.p: Vo A(x) I'Fpt: At)
['Fp: At ['Fp:dz Ax) Na:Alx)Fq: B x fresh
['F(t,p): dx A(x) ['Fdest pas(z,a)ing: B

Fl—pliAl Fl—pgiAQ Fl—pZAl/\AQ

F}_(pl,pg)IAl/\AQ F|_7T1pIAZ'
Fl_pAZ F|_p:A1\/A2 F,alell—pl:B F,CLQIAQ"]?QZB
I'F(p) - AV A ['F case p of [a1 = p1|as = po] : B
I'Fp: L

I'E(): T T'kabortp:C

Example

Ar.\a.dest a as (y,b) in case b of by = (y,b1) | b2 = (y, b)]

is a proof of

Vo (Jy [Bi(x,y) V Ba(x,y)] = [Ty Bi(z,y)| V [3y Bi(z, y)])

where
a is an hypothesis of type Jy [Bi(z,y) V Ba(x,y)]
b; is an hypothesis of type B;(x,y)

12

Martin-L&f's intuitionistic type theory (70's)

One can mix logic and programming languages!

A, B == P(t) p,q = a
| A= D | dap|pg
| Vz A(x) | Ax.p | pt
| dz A(x) | (t,p) | dest p as (x,a) in g
| AVB | u(p) | case p of [a1 = p1]az = p
| AAB | (p, @) [mi(p)
L | abort p
T 0

13

Martin-L&f's intuitionistic type theory (70's)

One can mix logic and programming languages!

Replace individuals by programs (which obey the same syntax as proofs!)

P
A= DB
Va A(a)
da A(a)
AV B
ANB

Aa.p | pq

Ab.p | pt

(q,p) | dest p as (b,a) in ¢

Li(p) | case p of [a; = p1|as = po
(P, q) | mi(p)

abort p

0

14

Martin-L&f's intuitionistic type theory (70's)

One can mix logic and programming languages!

Observe that = is now a particular case of V

P
Va A(a)
da A(a)
AV B
ANB

Aa.p|pq
(¢,p) | dest p as (b,a) in ¢
ti(p) | case p of [a; = p1|as = po

(p,q) | mi(p)
abort p

0

15

Martin-L&f's intuitionistic type theory (70's)

One can mix logic and programming languages!

Add a few interesting computational types such as Ny and interesting logical types such as
equality

A, B = P(p) p,q = a
| Vo A(z) | Aa.p|pg
| Jz Alz) | (g,p) | dest pas (b,a) in g
| AV B | wi(p) | case p of |ay = p1|as = po
| ANB | (p, @) [mip)
L | abort p
T 0
| Np | zero | succ | rec
| p=p | subst | refl

16

Martin-L&f's intuitionistic type theory (70's)

One can mix logic and programming languages!

One can go one level further and reflect propositions into the terms: add a new type prop
for propositions and consider defining new predicates themselves as functions to prop (e.g.
Ay Vx (x = y) is a predicate of type Ny — prop if y is a natural number)

A, B = P(p) P.,p,qg == a
|V Alz) | AXap|pg
| Jv Alz) | (q,p) | dest pas (b,a) ingq
| AVB | ti(p) | case p of a3 = p1|as = po
| AAB | (p.q) | milp)
- | abort p
T |0
| Ng | zero | succ | rec
| p=p | subst | refl
| prop | A

17

Martin-L&f's intuitionistic type theory (70's)

One can mix logic and programming languages!

Finally merge proofs/programs and types/formulae too!

A7B7P7p7q L= a

| VzAlz) | Aaplpg

| JxAz) | (¢,p)|dest pas(ba)ing

| AV B | u(p)|case pof [a1 = p1|as = po
| AAB | (pq) | mi(p)

- | abort p

T | 0

| Np | zero | succ | rec

| p=p | subst|refl

| prop

and add also strong projections of 3 and reason over propositions modulo evaluation of programs...
(the typing system will be in charge to sort out what is type/formula and what is term/proof)

18

New revelation: classical logic is constructive (Griffin 90)

One knew on the paper from Gentzen and Prawitz that cuts could be eliminated in classical logic.

Griffin revealed us that this can be effective on machine too, thanks to the callcc and throw
operators.

Example:

callcc,. (Yo, Ay.-Aa.throw,(y, Az.\b.a)

is a proof of the Drinker's paradox

dxVy.(P(z) = P(y))

19

A “programming’ language for the sequent calculus

t o= x| pac| et | (1)] ()
al|pr.clt-e|mle||ele
c == (t|e)

The corresponding sequent calculus has:
- two axioms

- no contraction: simulated by cuts with the axioms

terms
evaluation contexts
commands

terms: distinguished formula on the right

- three kinds of sequents ¢ ev. contexts: distinguished formula on the left

commands: no distinguished formula

20

Sequent calculus

AZUR AZCL
M AFx: A|A MNa:AFa:AA
y c:TFa:AA) i c:(Iz: AFA)
' pac: A|A ['jgr.c: AFA

Cut LFviA[A Tle:AEA
(v]e) - (T A)

[Le:AFov:B|A 'Fv:A|A Tle:BFA

'FXxwv:A= B: A ['v-e:A= BFA

21

Example
Here is how to write a proof by resolution as a “program':

ﬁlla l27 l3 _'lla _|l3

ll) l2 _'lla l2

=l [

The CNF here is A £ _llg N (ll V lg) N (ll = 12 V lg) A\ _I(ll AN 13)

22

Example

Here is how to write a proof by resolution as a “program':

AL Fl s Al F L

Al‘ll,lg A,l1|_l2

Ajlb =L AF

AF L

The CNF here is A2 =ly A (L V1) A (lp = Iy Vi3) A=(l Alg)

23

Example

Here is how to write a proof by resolution as a “program’:

a:A,alilll_Oégilg,agilg a:A,al:ll,ag:lgl—J_

a: Al oyl ol a:Aa L Fay:l

a:A a:lyF 1 a: Al as:ls

a:AF L

The CNF here is A £ _'ZQ N (ll V lg) N (ll = l2 V lg) N _'(ll N 13)

24

Example

Here is how to write a proof by resolution as a “program':

a:Aa lhFay:ly,as:l; a:Aa:l,a3:l3F L

a: Aoyl oy a:Aa L Fay:ls
CLZA,CLQIZQ"ZQ a:A|_Oé2:l2
a: A L

The CNF here is A i _llg A\ (ll V lg) A\ (ll = lg V lg) N\ _I(ll N 13)

A clause, say the third clause —ly, 15, l3, is seen as a proof of a : A,a1 : l1 F s : Iy, a3 : I3. This
proof is c3 = (a|ms - ay - [as|as])

The whole proof is a proof of = A:

Aa. (. (o .ol fray . (pas.cs| fras.cq)) | fras.c1)

By reducing the cuts, one would get a normal proof of = A

25

Example

Here is how to write a proof by resolution as a “program':

a:Aa lhFay:ly,as:l; a:Aa:l,a3:l3F L

a: Aoyl oy a:Aa L Fay:ls
CLZA,CLQIZQ"ZQ a:A|_Oé2:l2
a: A L

The CNF here is A i _llg A\ (ll V lg) A\ (ll = lg V lg) N\ _I(ll N 13)

A clause, say the third clause —ly, 15, l3, is seen as a proof of a : A,a1 : l1 F s : Iy, a3 : I3. This
proof in “intuitive” syntax is c3 £ case m3(a) aj of [by = throw,, by | b3 = throw,, bs]

The whole proof (in “intuitive”, but slightly approximative, syntax) is a proof of —A:

Aa.let ay = callcc,,.let a3 = callccy,.co in let ag = callccy,.c3 in ¢y in ¢

By reducing the cuts, one would get a normal proof of = A

26

Further developments

Markov's principle (——dz A(z) = Jx A(x) for A(x) decidable): a weakly classical principle that
corresponds to exceptions

Axiom of dependent choice (Vz3y A(x,y) = 3f VYn A(f(n), f(n+1))): computable e.g. using
lazy evaluation of streams

A few issues under progress:

- Combining Martin-L&f's type theory and classical logic (with application to Coq)

- Understanding the computational content of Cohen's forcing method (Krivine, Miquel)
- Understanding the role of side-effects in logic, if ever (memory assignment, ...)

- Computing with the full axiom of choice

27

