
Automated reasoning about retrograde
chess problems using Coq

Marko Malikovid, Ph.D.

The Faculty of Humanities and Social Sciences

University of Rijeka, CROATIA

Retrograde chess analysis

Method that determine which moves:

1. have to be 2. could be

played leading up to a given chess position

What did Black just play?
What was white's move before that?

Black did move his King (his only piece) from a7 (only possible square)!

8

7

6

5

4

3

2

1

a b c d e f g h

What did Black just play?
What was white's move before that?

Black king was in check by white bishop!
How white made the last checking move?
Bishop is blocked => Some white piece must have moved to discover the check!

8

7

6

5

4

3

2

1

a b c d e f g h

What did Black just play?
What was white's move before that?

White had some piece on a8 which black king captured by last move!

8

7

6

5

4

3

2

1

a b c d e f g h

What did Black just play?
What was white's move before that?

Only white piece which can discover the check is white knight!

8

7

6

5

4

3

2

1

a b c d e f g h

The position two moves before the
given position

8

7

6

5

4

3

2

1

a b c d e f g h

Retrograde chess analysis is a matter of deductive reasoning

Retrograde chess move

• Definition: "If in accordance with the laws of
chess, position Pn+1 arises from position Pn due
to the move m of piece p, then the retrograde
chess move m1 of move m is the movement of
piece p due to the position Pn arising from
position Pn+1"

Different types of retrograde chess moves
can have very different properties

Retrograde promotion with capturing

Basic formal system in Coq

M. Malikovid. A formal system for automated reasoning about
retrograde chess problems using Coq. Proceedings of 19th Central
European Conference on Information and Intelligent Systems, 2008, pp.
465-475. Varaždin, Croatia

• Chess pieces as enumerated inductive type:

Inductive pieces : Set := P | B | R | Q | N | K | p | b | r | q | n | k | O | v.

Position

Parameter position : nat -> list (list pieces).

Hypothesis H_position : position on =

(v :: nil) ::

(v :: k :: O :: K :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: Q :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: B :: O :: P :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: P :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: P :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: B :: nil) ::

nil.

Functions for computing check
positions

• Recursive for the bishop, rook and queen

• Non-recursive for knights and pawns

Recursive functions check the content of squares,
starting from the closest square of the king in all eight directions

Functions for computing check
positions

Square is empty -> Check next square!

Functions for computing check
positions

Square is empty -> Check next square!

Functions for computing check
positions

Square is engaged with opponent’s bishop =>
King is in check in direction left-up

Example in Coq:
Function for direction left-up

Fixpoint check_lu_k (xkb ykb : nat) (pos : list (list pieces)) {struct xkb} : Prop :=

match xkb with

S xkb' => match ykb with

S ykb' => match nth ykb' (nth xkb' pos nil) v with

O => check_lu_k xkb' ykb' pos

| Q => True

| B => True

| _ => False

end

| _ => False

end

| _ => False

end.

Functions for computing new position
after a retrograde move

position on =

(v :: nil) ::

(v :: k :: O :: K :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: Q :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: B :: O :: P :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: P :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: P :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: B :: nil) ::

nil.

position (S on) =

(v :: nil) ::

(v :: N :: O :: K :: O :: O :: O :: O :: O :: nil) ::

(v :: k :: O :: O :: O :: Q :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: B :: O :: P :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: P :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: P :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: O :: nil) ::

(v :: O :: O :: O :: O :: O :: O :: O :: B :: nil) ::

nil.

Retrograde move

• Type of retrograde move:

Parameter move : nat -> pieces -> nat -> nat -> nat -> nat -> pieces -> type_of_move.

• Sequences of retrograde moves are stored on
the list of moves:

H_list_moves : list_moves 2 =

moved 0 k 1 1 2 1 N standard_move ::

moved 1 A 1 1 3 2 b standard_move :: nil

Generating retrograde moves

Generating retrograde moves

M. Malikovid; M. Čubrilo. What Were the Last Moves? International
Review on Computers and Software (IRECOS), Vol. 5, No. 1, 2010, pp. 59-
70.

• Using Coq’s tactics and Ltac language we create only one Ltac function
One_Move

• We build up tree of retrograde chess moves and positions

• Every position as well as sequence of moves is stored in separate subgoal

• Thus, we use Coq’s proof tree as tree of states and actions

• Our system is automated:
– One_Move;One_Move;...

– If all subgoals become proven => position is not legal

– If only one subgoal remain unproven => it is a solution

Generating retrograde moves
- with heuristic solutions obtained by observation -

• Each retrograde move must satisfy a number of conditions

• For example, the function One_Move check:
– Is the player whose turn it is in check?

– Is the player whose turn it isn’t in check?

– Determining eventually forced moves
• e.g. because of the check positions by the pawn or knight

– Eliminating the moves of the rook and king if retrograde castling has
been already played by these pieces

– So-called “imaginary check positions”

– ...

Purposes of RCA

What were the last 3 moves

Mate in 2 moves!
Or: Is white’s en passant capture legal?

Can black castle?

Is position legal?

Shortest proof games

• SPG’s serve to establish the legality of a
position in chess problems by searching for
the shortest sequence of moves that lead
from initial to given chess position

Formal bases of system for solving
SPGs using Coq

M. Malikovid; M. Čubrilo. Solving Shortest Proof Games by Generating
Trajectories using Coq Proof Management System. Proceedings of 21st
Central European Conference on Information and Intelligent Systems,
2010, pp. 11-18. Varaždin, Croatia

M. Malikovid; M. Čubrilo. Formal System for Searching for the Shortest
Proof Games using Coq. International Review on Computers and
Software (IRECOS), Vol. 5, No. 6, 2010, pp. 746-756.

For given chess position we created
recursive functions in Coq for generating:

• Trajectories - planing paths between two
squares which certain pieces might follow to
reach the target square

For given chess position we created
recursive functions in Coq for generating:

• Shortest trajectories

For given chess position we created
recursive functions in Coq for generating:

• Admissible trajectories of some degree -
defined inductively:

– An admissible trajectory of degree 1 is a shortest
trajectory

– An admissible trajectory of degree k > 1 is a
concatenation of an admissible trajectory of
degree k-1 and one shortest trajectory

For given chess position we created
recursive functions in Coq for generating:

• Admissible trajectories

Admissible trajectory of degree k-1

Shortest trajectory

Admissible trajectory of degree k

For given chess position we created
recursive functions in Coq for generating:

• Circular trajectories - trajectory that’s starting
and end square coincide

• Circular trajectories can be generated as
admissible trajectories of some degree with
same starting and end square

Thank you!

