
A New Verification Tool: From LLVM Code

to SMT Formulae

Milena Vujošević-Janičić

Faculty of Mathematics, University of Belgrade, Serbia

www.matf.bg.ac.rs/˜milena

email: milena@matf.bg.ac.rs

Fourth Workshop on Formal and Automated Theorem Proving and
Applications

University of Belgrade
Belgrade, February 4-5, 2011.

• The work is done in collaboration with:

– prof. Dušan Tošić (University of Belgrade)

– prof. Viktor Kunčak (EPFL, Lausanne)

– prof. Filip Marić (University of Belgrade)

1

Abstract

A new approach and a corresponding tool for bug finding and for
checking correctness conditions is going to be presented. The
system works over LLVM code so it can be used for analysis of
programs in several programming languages. The approach com-
bines symbolic execution, SAT encoding of program’s behavior
and some features of bounded model checking. Namely, sin-
gle blocks of the code are modeled by first-order logic formulae
constructed by symbolic execution while relationships between
blocks are modeled by propositional formulae. Formulae that de-
scribe program’s behavior are combined with correctness condi-
tions for individual commands to produce correctness conditions
of the program to be verified. These conditions are passed to
an SMT solver covering a suitable combination of theories. Cur-
rently, there is support for the following SMT solvers: Boolector,
MathSAT, Yices, and Z3.

2

Overview of the talk

• Motivation and a short overview of the system

• Background

• Modeling correctness properties

• Implementation and preliminary results

• Conclusions and future work

3

• Motivation and a short overview of the system

• Background

• Modeling correctness properties

• Implementation and preliminary results

• Conclusions and future work

4

Motivation

• Verification of software and automated bug finding are one

of the greatest challenges in computer science

• Software bugs cost the world economy hundreds of billions

of dollars annually

• There are many existing approaches, but new ideas and tools

are still welcome

5

A Short Overview of the System

• The system works over LLVM code so it can be used for

analysis of programs in several programming languages

• It combines symbolic execution, SAT encoding of program’s

behavior and some features of bounded model checking

• Correctness conditions are generated and then passed to a

SMT solver covering a suitable combination of theories

6

• Motivation and a short overview of the system

• Background

• Modeling correctness properties

• Implementation and preliminary results

• Conclusions and future work

7

Background: LLVM - Low Level Virtual Machine

• LLVM is a rich compiler framework, with front-ends for C and
C++; front-ends for Java and Scheme are in development

• LLVM libraries provide a modern source- and target-independent
optimizer

• LLVM object code uses simple RISC-like instructions and
provides language-independent type information and data-
flow information about operands

• Each program function consists of blocks of instructions:
block can be entered only at its entry point, and left only
through its last command

8

Background: Bounded Model Checking

• Model Checking is a technique for automatically verifying

correctness properties of finite state systems, typically hard-

ware or software systems

• Bounded Model Checking checks properties of the system

which is underapproximated by loop unrolling (loops are un-

rolled a fixed number of times)

• Bounded Model Checking typically involves encoding the re-

stricted model as an instance of SAT or as a binary decision

diagram (BDD)

9

Background: Symbolic Execution

• Symbolic execution refers to the analysis of programs by
tracking symbolic values rather than actual values; it is used
to reason about all the inputs that take the same path
through a program

• Symbolic execution is typically used in conjunction with an
automated theorem prover, therefore there are limitations on
the classes of constraints they can represent and solve

• The main problem in symbolic execution is path explosion
and path coverage, therefore its main focus is finding bugs
in software, rather than demonstrating program correctness

10

Background: SAT/SMT

• SAT is a problem of deciding if a propositional formulae in
conjunctive-normal form is satisfiable

• The Satisfiability Modulo Theory (SMT) problem is a de-
cision problem for satisfiability of formulas with respect to
combinations of theories. Examples:

– the theory of linear arithmetic (LA)

– the theory of bit vector arithmetic (BVA)

– the theory of uninterpreted functions with equality (EUF)

– the theory of arrays (ARRAYS)

11

• Motivation and a short overview of the system

• Background

• Modeling correctness properties

• Implementation and preliminary results

• Conclusions and future work

12

Modeling correctness properties

• Dealing with variables, data types and instructions

• Modeling control flow and interprocedural analysis

• Constructing correctness conditions

• Translating correctness conditions to SMT formula

13

Dealing with Variables, Data types and Instructions

• We need to model

– Variables and simple data types

– Pointers and complex data types (buffers and structures)

– Dereferencing pointers

– Global variables

– Function calls

• Each instruction transforms the store of a program and may
add some constraints over variables (the store is a mapping
from variables to values from their domains)

14

Dealing with Variables, Data types and Instructions

• For a command of a form l = r, where r is a variable or a

operation over variables, the value of l in the store is replaced

by the value of r in the current store

• Pointers are treated as simple variables; also, functions left(p)

and right(p) are introduced to keep track of numbers of bytes

reserved for the pointer p on its left and its right side

• Buffers and structures are treated uniquely as sequences of

bytes accessible by a pointer and an offset

15

Dealing with Variables, Data types and Instructions

• Accessing memory via pointers is modeled by the theory of

arrays. This theory provides functions

– read — for reading a value at a certain index in the array

– write — for storing a value at a certain index in the array

• The array representing memory is kept in the store

• Global variables and variables that are referenced by address

operator are tracked through the memory array, others are

tracked through their slots in the store

16

Dealing with Variables, Data types and Instructions

• Function calls are modeled according to the available infor-
mation about the function:

– If a contract of a function is available, then the current
store is updated and additional constraints are added ac-
cording to the contract

– If a contract of the function is not available, while the
definition of function is, then all correctness conditions
from the called function are checked in this context and
the constructed postcondition of the function is inserted

– If neither a contract nor the definition of function are
available, then the memory array is set to a new (fresh)
variable

17

Modeling Control Flow and Interprocedural Analysis

• Instructions belong to blocks, there are no branching and no

loops in blocks

• Block summary, Transformation(b), describes the way in

which a block b transforms the store of the program; it is

constructed by symbolic execution

Transformation(b) =
∧

v∈V

(e(b, v) = ev)
∧

AdditionalConstraints(b)

• Values of the variables at the exit point are given in terms

of variables at the entry point

18

Modeling Control Flow and Interprocedural Analysis

• Links between blocks are modeled by propositional variables

• Postcondition of a block contains control flow information
and is defined as

Postcondition(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)

b

pred1 pred2 predn
XXXXXXXXXXXz

H
HHH

HHj

��������)

succ1 succ2 succm

�����������9

���
����

PPPPPPPPq

19

Modeling Control Flow and Interprocedural Analysis

Postcondition(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)
EntryCond(b) = activating(b) ∧ initialize(b)

Transformation(b) =
∧
v∈V

(e(b, v) = ev)
∧

AdditionalConstraints(b)

ExitCond(b) = jump(b) ∧ leaving(b)

activating(b) =

 ∨
pred∈Predcesors

transition(pred, b)

⇔ active(b)

initialize(b) =
∧

pred∈Predcesors

transition(pred, b)⇒
∧

v∈Vf

e(pred, v) = s(b, v)


jump(b) =

∧
succi∈Successors

((active(b) ∧ e(b, ci))⇔ transition(b, succi))

leaving(b) = active(b)⇔

(∨
succ∈Successors

transition(b, succ)

)

20

Modeling Control Flow and Interprocedural Analysis

• Loops are unrolled, there are two possibilities

– Underapproximation of loops (loops are unrolled fixed num-

ber of times like in bounded model checking)

– Overapproximation of loops (unrolled code simulates first

m and last n entries to the loop)

21

Modeling Control Flow and Interprocedural Analysis

• LLVM assures that there are a unique entry and a unique

leaving point of each function

• The postcondition of a function is constructed as a conjunc-

tion of postconditions of the function blocks

• For each function call, formula representing postcondition of

a function is added to additional constraints

• Recursive function calls are not handled yet

22

Constructing Correctness Conditions

• Correctness conditions are of the form A⇒ B

• A is a formula describing context (empty context, block con-

text, function context, wider context)

• B is a formula describing (in)correctness condition of an in-

struction:

– it can be given by a bug definition — division by zero,

buffer overflow, dereferencing null pointers

– it can be given by an annotation

23

Constructing Corectness Conditions

• Example:

– a = b/5 — the command can be proved safe by using an
empty context

– a = b/c — if the variable c is assigned a concrete value
in the current block, then the command can be proved
safe/flawed using a block context

– a = b/c — if the variable c is not assigned any concrete
value in the current block, then, in order to prove that the
command is safe/flawed, postconditions of predecessors
of the block have to be included into the context

– ...

24

Translating correctness conditions to SMT formula

• Select a suitable SMT theory (LA, BVA, EUF, ARRAYS)

• Translate program data-types to SMT types

• Use EUF or ackermannization

• Select solver

• Take advantage of incremental mode of solver

25

• Motivation and a short overview of the system

• Background

• Modeling correctness properties

• Implementation and preliminary results

• Conclusions and future work

26

Implementation and preliminary results

• The tool LAV is implemented in C++, ≈ 330kB, 10 000 lines

of source code plus the code based on Filip Marić’s code for

shared expressions and for APIs for SMT solvers

• For efficiency, many aspects of the general theoretical model

are optimized for number of special cases

• There is support for the following SMT solvers: Boolector

(BVA and ARRAYS), Yices and MathSAT (LA, BVA, EUF)

and Z3 (LA, BVA, EUF, ARRAYS)

27

Preliminary results

• Tested on several benchmark sets

• Applicable on a wide range of input programs

• Very precise for many types of problems

• Concerning efficiency, comparable (based still on a small set

of inputs) to Klee and ESBMC (state of the art tools based

on symbolic execution and on bounded model checking)

28

• Motivation and a short overview of the system

• Background

• Modeling correctness properties

• Implementation and preliminary results

• Conclusions and future work

29

Conclusions and future work

• A new verification approach and a corresponding tool pre-
sented

• Still under development

• Make deep evaluation and detailed comparison with other
tools

• Make LAV open-source

• Further improvement of efficiency

30

Conclusions and future work

• Explore different variations of the current modeling

• Improve interprocedural analysis

• Model recursion and make handling loops more sophisticated

• Add new features, like unit tests generation

• Take advantage of LLVM code optimizations

31

Thank you for your attention!

32

