How Efficient Can Fully Verified Functional
Programs be - a Case Study of Graph Traversal
Algorithms

Mirko Stojadinovi¢ Filip Mari¢
{mirkos,filip}@matf.bg.ac.rs

Department of Computer Science
Faculty of Mathematics
University of Belgrade

Fourth Workshop on Formal and Automated Theorem Proving
and Applications

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Outline

@ Introduction

© First version of BFS - using fsets

© Second version of BFS - using monads
QO Efficiency comparison

© Conclusions and future work

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Introduction

@ Introduction

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be -

Introduction

Introduction

@ Make programs that are efficient, and prove their correctness
@ Get an insight for current possibilities to do that

@ Compare efficiency between imperative and functional
programs

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Introduction

Today's presentation focus

@ Shallow embedding
o Writing functional programs within proof assistant
Isabelle/HOL
o Proving their correctness

@ Exporting executable code to functional language ML (Haskell
and Scala also supported)

@ Comparing exported code efficiency to efficiency of imperative
programs implementing the same algorithm

@ Case study demonstrating these things: BFS algorithm
(Breadth First Search) for graphs

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac.

How Efficient Can Fully Verified Functional Programs be - a

First version of BFS - using fsets

Outline

© First version of BFS - using fsets

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

First version of BFS - using fsets

First version of BFS - using fsets

@ Write program in Isabelle/HOL using fsets (a kind of sets) and
than export code

@ Good properties: not so difficult to do

@ Bad properties: poor efficiency (due to recreation of structures)

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Second version of BFS - using monads

Outline

© Second version of BFS - using monads

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Second version of BFS - using monads

Monads

@ Concept of monads in functional programming allows us to:
o make imperative data structures (arrays)
e write code similarly structured to one in imperative languages
s achieve better efficiency

New features in Isabelle/HOL

@ lIsabelle 2011 includes new framework Imperative HOL
employing monadic features

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Second version of BFS - using monads

New idea

@ prove the correctness of program using fsets (with poor
efficiency)

@ prove this program is equivalent to one using monads (which is
much more efficient)

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Efficiency comparison

Outline

@ Efficiency comparison

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Efficiency comparison

Efficiency comparison

Imperative vs Functional
@ We compared implementation of BFS algorithm in C and ML
(exported from Isabelle, using monads)

@ In order to make a fair comparison, we write codes that are
really similar to each other

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Efficiency comparison

Vertices Edges C time | ML time
3493 6036534 | 0.03s 0.3s
4500 10143032 | 0.05s 0.5s
5555 15450463 | 0.07s 0.7s
70570 705700 0.02s 0.7s

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac.

How Efficient Can Fully Verified Functional Programs be - a

Conclusions and future work

Outline

© Conclusions and future work

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Conclusions and future work

Conclusions

@ From the example of graph alghoritms we conclude that wide
range of programs can be implemented using monads

@ Their correctness can be proved in Isabelle/HOL

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

Conclusions and future work

Future work

@ Prove that fset and monad programs are equivalent
@ Compare efficiency between more programs

@ See the possibilities of other tools (Microsoft Spec Sharp)

Mirko Stojadinovi¢, Filip Mari¢ {mirkos,filip}@matf.bg.ac. How Efficient Can Fully Verified Functional Programs be - a

	Introduction
	First version of BFS - using fsets
	Second version of BFS - using monads
	Efficiency comparison
	Conclusions and future work

