
On Continuous, Discrete and Timed Models in
Systems Biology

Oded Maler

CNRS - VERIMAG
Grenoble, France

2009

Based on joint work with Gregory Batt, Thao Dang, Colas Le Guernic,

Eugene Asarin, Marius Bozga, Ramzi Ben Salah and Antoine Girard

Dedicated to the memory of Moti Liscovitch

Systems Biology

I Systems Biology: the new gold rush for many mathematical
and technical disciplines

I Biophysics, Biomatics, Bioinformatics, Biostatistics...
I The generic template:

I I do X (for my pleasure, because I studied it, that’s what I
know) but... X can also be useful for Biology

I So Here I am, presenting my own X , a certain species of
Informatics / Computer Science

I My X is based on automata as dynamical systems with
excursions into hybrid dynamics (automata plus differential
equations) and timed dynamics (automata plus quantitative
time) as an intermediate level of abstraction

I When you have a hammer, everything looks like a nail

Summary

I Informatics is more than technology, it is also a kind of
mathematics/physics

I Automata as dynamical systems

I Verification illustrated

I Between the discrete and the continuous
I Timed models and their applications

I Adding time to discrete models of genetic regulatory networks
I From continuous to timed systems (the technical contribution

of the paper in the proceedings)

I Back to the big picture

Computer Technology

I Computers, Networks, Operating Systems, Data-Bases, Web,
Search Engines, Graphics,

I Embedded Systems, Sensors, Programming Languages, Word
Processing, Computer Control, Robotics, Security ..

I Influence on all domains of human activity, including Biology:

I String Processing for DNA, Statistical Computations,
Simulation, Animation

I Date-Bases, Micro-Arrays, Ontologies and Description
Languages

I Communication and Data Sharing, Lab Management

In all those activities the computer is a useful material tool in the
service of others

A More Noble Role, Perhaps

I Biology seems to be trying to go through a kind of Newtonian
revolution

I The essence of such revolution is to upgrade (as much as
possible) descriptive “models” by dynamic models with
stronger predictive power and refutability

I Classical models of dynamical systems are clearly not
sufficient for effective modeling of biological phenomena

I Models, insights and computer-based analysis tools developed
within Informatics can help

What Is Informatics ?

I Among other things informatics is: the (pure and applied)
study of discrete-event dynamical systems (automata,
transition systems)

I A natural point of view for the “reactive systems” parts of
informatics (hardware, protocols, real-time, stream processing)

I Especially for people working on modeling and verification of
such systems

I Sometimes obscured (intentionally or not) by fancy
formalisms: Petri nets, process algebras, rewriting systems or
temporal logics..

I All honorable topics with intrinsic importance, beauty, etc.

I But sometimes should be distilled to their essence in order to
make sense for potential users from other disciplines (rather
than frighten/impress them)

Dynamical System Models in General

I State variables whose set of valuations determine the state
space

I Time domain along which these values evolve

I Dynamic law which says how state variables evolve over time,
possibly under the influence of external factors

I System behaviors are progressions of states in time

I Having such a model, knowing an initial state x(0) one can
predict, to some extent, the value of x(t)

I

I Remark: Variables in Biology can be of various natures and
granularities (concentrations, states of individual molecules,
stages in processes, etc.)

Classical Dynamical Systems

I State variables: real numbers (location, velocity, energy,
voltage, concentration)

I Time domain: the real time axis R or a discretization of it

I Dynamic law: differential equations

ẋ = f (x , u)

or their discrete-time approximations

x(t + 1) = f (x(t), u(t))

I Behaviors: trajectories in the continuous state space

I Achievements: Apples, Stars, Missiles, Electricity, Heat,
Chemical processes

I Theorems, Papers, Simulation tools

Automata as Dynamical Systems

I Abstract discrete state space, state variables need not have a
numerical meaning

I Logical time domain defined by the events (order but not
metric)

I Dynamics defined by transition tables: input event a takes the
system from state s to state s′

I Behaviors are sequences of states and events

I Composition of large systems from small ones, hierarchical
structuring

I Different modes of interaction: synchronous/asynchronous,
state-based/event-based

I Sometime additional syntax may be required

Automata can Model many Phenomena and Devices

I Software, hardware,

I ATMs, user interfaces

I Administrative procedures

I Communication protocols

I Cooking recipes, Manufacturing instructions

I Any process that can be viewed as a sequence of steps

I But what can we do with these models?

I There are no analytical tools as in continuous systems

I We can simulate and sometimes do formal verification

What is Verification ?

I Given a complex discrete dynamical system with some
uncontrolled inputs or unknown parameters

I Check whether ALL its behaviors satisfy some properties
I Properties:

I Never reach some part of the state space
I Always come eventually to some (equilibrium) state
I Never exhibit some pattern of behavior
I Quantitative versions of such properties..

I Existing tools can do this type of analysis for huge systems by
sophisticated graph algorithms

Illustration: The Coffee Machine

I Consider a machine that takes money and distributes drinks

I The system is built from two subsystems, one that takes care
of financial matters, and one which handles choice and
preparation of drinks

I They communicate by sending messages

M1

5

4

6

M2

drink-ready

st-tea

st-coffee

3

2

1

coin-in

cancel

coin-out

7

8

9

req-coffee

req-tea

reset

ok

done

Automaton Models

I The two systems are models as automata (state-transition
systems)

I transitions are triggered by external events and events coming
from the other subsystem

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

done/

0 1

coin-in/ ok

cancel/coin-out, reset

M1

The Global Model

I The behavior of the whole system is captured by a
composition (product) M1 ‖ M2 of the components

I States are elements of the Cartesian product of the respective
sets of states, indicating the state of each component

I Some transitions are independent and some are synchronized,
taken by the two components simultaneously

I Behaviors of the systems are paths in this transition graph

done/

0 1

coin-in/ ok

cancel/coin-out, reset

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

M1

Normal Behaviors

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Customer puts coin, then sees the bus arriving, cancels and
gets the coin back

0A coin-in 1B cancel coin-out 0A

I Customer inserts coin, requests coffee, gets it and the systems
returns to initial state

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A

An Abnormal Behavior

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Suppose the customer presses the cancel button after the
coffee starts being prepared..

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C

drink-ready 0A

I Not so attractive for the owner of the machine

Fixing the Bug

I When M2 starts preparing coffee it emits a lock signal

I When M1 received this message it enters a new state where
cancel is refused

M1

0 1

coin-in/ ok

2

lock/

cancel/coin-out, reset

done/

drink-ready/done

drink-ready/done

A

C

B

D

reset/

req-coffee/st-coffee,lock

req-tea/st-tea,lock

M2

ok/

0A 1B

drink-ready/

2C

2D

coin-in/

cancel/coin-out req-tea/st-tea

req-coffee/st-coffee

drink-ready/

The Moral of the Story I

I Many complex systems can be modeled as a composition of
interacting automata

I Behaviors of the system correspond to paths in the global
transition graph of the system

I The size of this graph is exponential in the number of
components (state explosion, curse of dimensionality)

I These paths are labeled by input events representing
influences of the outside environment

I Each input sequence may generate a different behavior

I We want to make sure that a system responds correctly to all
conceivable inputs, that it behaves properly in any
environment (robustness)

The Moral of the Story II

I How to ensure that a system behaves properly in the presence
of all conceivable inputs and parameters?

I For every individual input sequence or parameter value we can
simulate the reaction of the system. But we cannot do it
exhaustively

I Verification is a collection of automatic and semi-automatic
methods to analyze all the paths in the graph

I This is hard for humans to do and even for computers

I And this type of analysis and way of looking at phenomena is
our potential contribution to Biology

Hybrid Systems: Motivation

I Hybrid systems combine the discrete dynamics of automata
with continuous dynamics defined by differential equations

I Each state may correspond to a mode of a system (a gene is
on, a valve/heater is closed, the car is in a second gear)

I In each state there is a different continuous dynamics

I The system may switch between modes according to the
values of the continuous variables

I For example, the heater is turned off when temperature is
high, a valve is opened when the water level crosses a
threshold

Hybrid Systems: Motivation

I Hybrid systems combine the discrete dynamics of automata
with continuous dynamics defined by differential equations

I Each state may correspond to a mode of a system (a gene is
on, a valve/heater is closed, the car is in a second gear)

I In each state there is a different continuous dynamics

I The system may switch between modes according to the
values of the continuous variables

I For example, the heater is turned off when temperature is
high, a valve is opened when the water level crosses a
threshold

Hybrid Systems Analysis is Difficult

I Purely continuous systems (especially linear ones) admit a lot
of mathematical analysis techniques

I Hybrid systems are much harder to analyze because switching
breaks their nice mathematical properties

I New techniques inspired by discrete verification are being
developed

I Combination of numerical analysis, graph algorithms and
computational geometry

Hybrid Systems Analysis is Difficult

I Purely continuous systems (especially linear ones) admit a lot
of mathematical analysis techniques

I Hybrid systems are much harder to analyze because switching
breaks their nice mathematical properties

I New techniques inspired by discrete verification are being
developed

I Combination of numerical analysis, graph algorithms and
computational geometry

Verification for Continuous Systems

I The problem: a dynamical system ẋ = f (x , p, u) where u is an
external disturbance and p is a parameter

I Both u and p are not known exactly but are bounded

I Can something be said about all the possible behaviors of the
system for all range of parameters and all external
disturbances?

x0 x0

Verification for Continuous Systems

I The problem: a dynamical system ẋ = f (x , p, u) where u is an
external disturbance and p is a parameter

I Both u and p are not known exactly but are bounded

I Can something be said about all the possible behaviors of the
system for all range of parameters and all external
disturbances?

x0 x0

Verification for Continuous Systems

I A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

x0x0
x0

I Can replace an infinite number of simulations

I Useful for Biological models where exact parameters are hard
or impossible to obtain

I State-of the-art: tools at various levels of sophistication and
maturity can analyze linear systems with hundreds of state
variables, as well as small nonlinear ones

Verification for Continuous Systems

I A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

x0x0
x0

I Can replace an infinite number of simulations

I Useful for Biological models where exact parameters are hard
or impossible to obtain

I State-of the-art: tools at various levels of sophistication and
maturity can analyze linear systems with hundreds of state
variables, as well as small nonlinear ones

Verification for Continuous Systems

I A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

x0x0
x0

I Can replace an infinite number of simulations

I Useful for Biological models where exact parameters are hard
or impossible to obtain

I State-of the-art: tools at various levels of sophistication and
maturity can analyze linear systems with hundreds of state
variables, as well as small nonlinear ones

Reachability for Nonlinear Systems

I New algorithms for computing tubes of trajectories for
systems defined by nonlinear differential equations

I Using new dynamic hybridization methods we can analyze
nontrivial nonlinear systems

I Biological models: Lac operon (6 state variables) aging model
(9 state variables)

Lac Operon

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ− Of)− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ− Of)

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

On Levels of Abstraction

I A phenomenon can be described at different levels of
abstraction and granularity

I Each level presents a trade-off in expressivity, accuracy and
complexity of analysis

I When we consider processes inside the cell we encounter
typically two major classes of models:

I Evolution of protein concentrations (real numbers) following
laws of mass action (continuous dynamical systems)

I Discrete descriptions: the presence of A leads to the
appearance of B which, eventually suppresses C

I I claim that not all the spectrum of possible model classes
between these two has been explored

Timed Systems

I An extremely-important level of abstraction between the
discrete and the continuous

I Continuous description: how the concentration of some
product evolves over time

I Discrete description: the product level moves from low to high

I Timed description: the product level moves from low to high
and this process takes between 3 and 5 hours to complete

I This is how we reason about our travel plans, workshop
schedules and almost everything in daily life

I At this level the dynamical models are timed automata,
automata with auxiliary clock variables

The Case for Timed Models

I Such timed discrete models will, perhaps, give a good
complexity/informativeness trade-off

I This claim is illustrated (not demonstrated) using two
meta-modeling case studies

I Adding time to the purely-discrete models of genetic regulatory
networks

I Deriving timed models from continuous models (multi-affine
differential equations)

I In both cases, some weaknesses of purely-discrete models are
avoided

I These are proofs of concept and a lot of work remains to be
done in order to improve accuracy and reduce complexity

Genetic Regulatory Networks for (and by) Dummies

I A set G = {g1, . . . , gn} of genes

I A set P = {p1, . . . , pn} of products (proteins)

I Each gene is responsible for the production of one product

I Genes activations are viewed as Boolean variables (On/Off)

I When gi = 1 it will tend to increase the quantity of pi

I When gi = 0 the quantity of pi will decrease (degradation)

I Feedback from products concentrations to genes: when the
quantity of a product is below/above some threshold it may
set one or more genes on or off

Continuous and Discrete Models of Genetic Networks

I Product quantities can be viewed as integer (quantity) or real
(concentration) numbers

I The system can be viewed as a hybrid automaton with
discrete states corresponding to combinations of gene
activations states

I The evolution of product concentrations can be described
using differential equations

I Alternatively, the domain of these concentrations can be
discretized into a finite (and small) number of ranges

I The most extreme of these discretizations is to consider a
Boolean domain {0, 1} indicating present or absent

The Discrete Model of R. Thomas

I Gene activation is specified as a Boolean function over the
presence/absence of products

I When a gene changes its value, its corresponding product will
follow within some unspecified delay

I The resulting model is equivalent to an asynchronous
automaton

I The relative speeds of producing different products are not
modeled

I The model admits many behaviors which are not possible if
these speeds are taken into account

I We add this timing information in a systematic manner, as we
did in the past for asynchronous digital circuits [Maler and
Pnueli 95]

Boolean Delay Networks

· · · fnf3f2f1

g1 g2 g3
gn

D2D1 D3 Dn
· · ·

· · ·

p1 p2 p3 pn

I A change in the activation of a gene is considered
instantaneous once the value of f has changed

I This change is propagated to the product within a
non-deterministic but bi-bounded delay specified by an interval

The Delay Operator

I For each i we define a delay operator Di , a function from
Boolean signals to Boolean signals characterized by 4
parameters

pi gi p′i ∆

0 0 0 −
0 1 1 [l↑, u↑]
1 0 0 [l↓, u↓]
1 1 1 −

I When pi 6= gi , pi will catch up with gi within t ∈ [l↑, u↑]
(rising) or t ∈ [l↓, u↓] (falling)

The Delay Operator

t t + l↑ t + u↑ t′ t′ + l↓ t′ + u↓

gi

pi

Nondeterministic

t t′t + d↑

gi

pi

t′ + d↓

Determinisitc

I The semantics of the network is the set of all Boolean signals
satisfying the following set of signal inclusions

gi = fi (p1, . . . , pn)
pi ∈ Di (gi)

Modeling with Timed Automata

I For each equation gi = fi (p1, . . . , pn) we build the automaton

g gf (p1, . . . , pn) = 1

f (p1, . . . , pn) = 0

I For each delay inclusion pi ∈ Di (gi) we build the automaton

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0

I Composing these automata we obtain a timed automaton
whose semantics coincides with that of the system of signal
inclusions

The Delay Automaton

I The automaton has two stable states gp and gp where the
gene and the product agree

I When g changes (excitation) the automaton moves to the
unstable state and resets a clock to zero

I It can stay in an unstable state as long as c < u and can
stabilize as soon as c > l .

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0

Expressing Temporal Uncertainty

I In this automaton the uncertainty interval [l , u] is expressed
by the non-punctual intersection of the guard c ≥ l and the
invariant c < u

I An alternative representation: making the stabilization
transition deterministic and accompany the excitation
transition with a non-deterministic reset

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑ − l↑]
g = 1/

g = 0/
c := [0, u↓ − l↓]

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0

Where do Delay bounds Come From?

I These are abstractions of continuous growth and decay
processes indicating the time it takes to move between points
in domains p0 = [0, θ] and p1 = [θ, 1]

I For example, for constant rates k↑ and k↓ the bounds will be
D↑ = [0, θ/k↑] and D↓ = [0, θ/k↓]

θ

p

t
u↓

Decay

p1

p0

θ

t

p

u↑

Production

p0

p1

I In any case, if we want the abstraction to be conservative we
should have a zero lower bound

I And this smells of Zenonism...

To Zeno or not to Zeno?

I Consider a negative feedback loop where the presence of p
turns g off and its absence turns g on

g

D

p

¬p

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑] c := [0, u↓]

I Among the behaviors that the automaton may exhibit, if we
allow a zero lower bound, is a zero time cycle

I Whether this is considered a bug or a feature depends on
one’s point of view

I This is related to the fundamental difference between the
discrete and the continuous

Zenonism from a Continuous Point of View
I The continuous model of the negative feedback loop is a

one-dimensional vector field pointing to an equilibrium point θ

θ

I In “reality” the value of p will have small oscillations around θ
which is normal. Not much difference between θ, θ + ε, θ − ε

I Discrete abstraction amplifies this difference. The inverse
image of the oscillating Boolean signal contains also large
oscillations

p

p0

p1

θ

t

t

p1

p0

θ

p

Regrets and Abortions

I Another point in favor of a zero lower bound:

I Suppose g changes, triggers a change in p and then switches
back before p has stabilized, aborting the process

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

g = 0/
c := [0, u↓]

g = 1/
c := [0, u↑]

g = 1/g = 0/
θ

gp

p

gp gp gp

p

gpgp

I In the “stable” state there is a decay process inside p0

I Without additional clocks we do not now for how long

I Has the p level returned to the “nominal” low value or is still
close to the threshold?

Multi-Valued Models

I The incompatibility between the discrete and the continuous
is an eternal problem

I Its effect on modeling and analysis can be reduced
significantly using multi-valued discrete models

I Instead of {0, 1} we use {0, 1, . . . ,m − 1} which, via a set
0 < θ1 < θ2 < . . . , < θm−1 < 1 of thresholds, defines every
discrete state as

pi = [θi , θi+1]

0 . . . θm−1

p0 p1 p2 pm−1. . .

θ2θ1

I If you just entered pi from pi−1, you need to cross the whole
pi in order to reach pi+1

Multi-Valued Delay Operator

I The delay operator for multiple values will have 2(m − 1)
parameters in each direction.

I When g = 1, p will progress toward the next level and vice
versa

g p p′ ∆ g p p′ ∆

0 0 0 − 1 0 1 [l↑0 , u
↑
0]

0 1 0 [l↓1 , u
↓
1] 1 1 2 [l↑1 , u

↑
1]

0 2 1 [l↓2 , u
↓
2] 1 2 3 [l↑2 , u

↑
2]

. .

0 m − 1 m − 2 [l↓m−1, u
↓
m−1] 1 m − 1 m − 1 −

l↑i = min{t : θi
t−→ θi+1} u↑i = max{t : θi

t−→ θi+1}
l↓i = min{t : θi

t−→ θi−1} u↓i = max{t : θi
t−→ θi−1}

The Automaton for the Multi-Valued Model

0 . . . θm−1

p0 p1 p2 pm−1. . .

θ2θ1

c < u↓2

(g , 2)

(g , 2)

g = 0/

c < u↑2c < u↑0

(g , 0)

(g , 0)

g = 0/

c < u↓1

(g , 1)

(g , 1)

c := [0, u↓1]
g = 0/

c := [0, u↓2]

c < u↑1

c = u↑0 / c = u↑1 / c = u↑2 /

c = u↓3 /c = u↓2 /c = u↓1

g = 1/
c := [0, u↑2]

g = 1/
c := [0, u↑1]

g = 1/
c := [0, u↑0]

c := [0, u↓2 − l↓2]c := [0, u↓1 − l↓1]

c := [0, u3 ↑ −l↑3]c := [0, u2 ↑ −l2 ↑]c := [0, u↑1 − l↑1]
· · ·

· · ·

I The lower bound for moving from (g , i) to (g , i + 1) depends
on the state from which (g , i) was entered

I If from (g , i − 1) (continuous evolution) then it is l↑i
I If from (g , i) (change of direction) then it is 0

I Zero/Zeno cycles can happen only among neighbors i ,i + 1

The Global Automaton

I We then compose all these automata to obtain a global timed
automaton with n clocks and roughly 2n discrete states

I This automaton represents all the behaviors of the network
while taking timing into account

I Existing tools can take a description of such a timed
automaton and compute all the possible behaviors under all
choices of delays

I We use our IF toolbox and demonstrate its capabilities on
several examples

I Not much biological significance at this point (no
experimental delay values available)

Example: Transcription Cascade for E. Coli

TetR LacI EYFPCI

aTc

tetR lacI cI eyfp

10000

10001

(EYFP:=1)

10010

(CI:1)

11000

(TetR:=1)

10100

(LacI:=1)

10011

(CI:=1)

11001

(TetR:=1)

10101

(LacI:=1)

11010

(TetR:=1)

10110

(LacI:=1)

(EYFP:=1)

(CI:=1)

11100

(LacI:=1)

(EYFP:=1) (TetR:=1)

(EYFP:=0)

11011

(TetR:=1)

10111

(LacI:=1) (CI:=1)

11101

(LacI:=1)

(TetR:=1)

11110

(LacI:=1) (TetR:=1)

00101

(CI:=0)

(EYFP:=1)

(EYFP:=0)

11111

(LacI:=1)

(CI:=0)

(EYFP:=0) (TetR:=1)

(CI:=0) (EYFP:=1) (TetR:=1) (CI:=0)

(EYFP:=0)

From Continuous Systems To Automata I

I Consider again a continuous dynamical system ẋ = f (x)
defined over X ⊆ Rn

I A popular (and old) approach for analyzing such systems
(qualitative physics, robotics motion planning, etc.) is to
approximate it by a finite-state automaton as follows:

I Impose a finite partition Π = {P1, . . .Pk} on X

I Define an automaton with state space Π and transition
relation δ such that

I (P,P ′) ∈ δ iff P and P ′ are adjacent and there are points
x ∈ P and x ′ ∈ P ′ and a trajectory leading from x to x ′

I The latter fact can be sometimes determined easily by
analyzing f on the boundary between P and P ′

From Continuous Systems To Automata II

P1 P3

P2 P4

P1

P2
P4

P3

I Once you have a finite automaton you are happy because you
can apply all the model-checking algorithms and tools that
you already have

I But there is no free lunch

False Transitivity and Spurious Behaviors

I Such abstract models often exhibit spurious behaviors, that
are not possible in the concrete system

I You may go from x ∈ P1 to x ′ ∈ P2 and from y 6= x ′ ∈ P2 to
y ′ ∈ P3 but not necessarily from P1 to P3

x

x′

y

y′

P1 P2 P3

P1 P2 P3

I Sometimes the approximation error renders the model useless

How to Reduce Spurious Behaviors

I One can see the evolution as a competition between state
variables:

I Who will cross the next threshold in its direction

I A dimension that wins, starts the competition in the next
block from an inferior position and is less likely to win again

Using Clocks

I We associate a clock ci with each dimension which is reset
whenever a boundary is crossed in direction i

I The next transition in the same direction is constrained to
occur when ci ∈ [li , ui]

c2 := 0

c2 ∈ [l2, u2]

c1 ∈ [l1, u1]

c1 := 0

I The constants are inferred from the minimal and maximal
value of fi in the corresponding “slice” (slightly circular
reasoning)

I It is easy to compute these min-max values for multi-affine
systems

Current and Future Status

I Prototype implementation, does not work on the fly but
generates the whole model in the IF format

I Not surprisingly, works rather well in monotone parts of the
state space. In parts where some fi admits a zero we need to
be more careful

I Some examples, not yet convincing

I For the more general class of polynomial systems, extremal
values of fi should be computed numerically

I Future: a tighter tool integration, automatic choice of
partition thresholds, model-checking against MITL

Back to the Big Picture

I Biology needs (among other things) more dynamic models to
form verifiable predictions

I These models can benefit from the accumulated
understanding of dynamical system within informatics and
cannot rely only on 19th century mathematics

I The views of dynamical system developed within informatics
are, sometimes, more adapted to the complexity and
heterogeneity of Biological phenomena

I Biological modeling should be founded on various types of
dynamical models: continuous, discrete, hybrid and timed

I These models should be strongly supported by computerized
analysis tools offering a range of capabilities from simulation
to verification and synthesis

Back to the Big Picture

I Systems Biology should combine insights from:

I Engineering disciplines: modeling and analysis of very complex
man-made systems (chips, control systems, software,
networks, cars, airplanes, chemical plants)

I Physics: experience in mathematical modeling of natural
systems with measurement constraints

I Mathematics and Informatics as a unifying theoretical
framework

Thank You

