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Systems Biology

» Systems Biology: the new gold rush for many mathematical
and technical disciplines

» Biophysics, Biomatics, Bioinformatics, Biostatistics...

» The generic template:
» | do X (for my pleasure, because | studied it, that's what |
know) but... X can also be useful for Biology

» So Here | am, presenting my own X, a certain species of
Informatics / Computer Science

» My X is based on automata as dynamical systems with
excursions into hybrid dynamics (automata plus differential
equations) and timed dynamics (automata plus quantitative
time) as an intermediate level of abstraction

» When you have a hammer, everything looks like a nail



Summary
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Informatics is more than technology, it is also a kind of
mathematics/physics

Automata as dynamical systems
Verification illustrated

Between the discrete and the continuous
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Timed models and their applications
» Adding time to discrete models of genetic regulatory networks
» From continuous to timed systems (the technical contribution
of the paper in the proceedings)

v

Back to the big picture



Computer Technology

» Computers, Networks, Operating Systems, Data-Bases, Web,
Search Engines, Graphics,

» Embedded Systems, Sensors, Programming Languages, Word
Processing, Computer Control, Robotics, Security ..

» Influence on all domains of human activity, including Biology:

» String Processing for DNA, Statistical Computations,
Simulation, Animation

» Date-Bases, Micro-Arrays, Ontologies and Description
Languages

» Communication and Data Sharing, Lab Management

In all those activities the computer is a useful material tool in the
service of others



A More Noble Role, Perhaps

» Biology seems to be trying to go through a kind of Newtonian
revolution

» The essence of such revolution is to upgrade (as much as
possible) descriptive “models” by dynamic models with
stronger predictive power and refutability

» Classical models of dynamical systems are clearly not
sufficient for effective modeling of biological phenomena

» Models, insights and computer-based analysis tools developed
within Informatics can help



What Is Informatics ?

» Among other things informatics is: the (pure and applied)
study of discrete-event dynamical systems (automata,
transition systems)

» A natural point of view for the “reactive systems” parts of
informatics (hardware, protocols, real-time, stream processing)

» Especially for people working on modeling and verification of
such systems

» Sometimes obscured (intentionally or not) by fancy
formalisms: Petri nets, process algebras, rewriting systems or
temporal logics..

» All honorable topics with intrinsic importance, beauty, etc.

» But sometimes should be distilled to their essence in order to
make sense for potential users from other disciplines (rather
than frighten /impress them)



Dynamical System Models in General

» State variables whose set of valuations determine the state
space

» Time domain along which these values evolve

» Dynamic law which says how state variables evolve over time,
possibly under the influence of external factors

» System behaviors are progressions of states in time

» Having such a model, knowing an initial state x(0) one can
predict, to some extent, the value of x(t)

» Remark: Variables in Biology can be of various natures and
granularities (concentrations, states of individual molecules,
stages in processes, etc.)



Classical Dynamical Systems

» State variables: real numbers (location, velocity, energy,
voltage, concentration)

» Time domain: the real time axis R or a discretization of it

» Dynamic law: differential equations
x = f(x,u)
or their discrete-time approximations
x(t+1) = f(x(t), u(t))

» Behaviors: trajectories in the continuous state space

» Achievements: Apples, Stars, Missiles, Electricity, Heat,
Chemical processes

» Theorems, Papers, Simulation tools



Automata as Dynamical Systems

» Abstract discrete state space, state variables need not have a
numerical meaning

» Logical time domain defined by the events (order but not
metric)

» Dynamics defined by transition tables: input event a takes the
system from state s to state s’

» Behaviors are sequences of states and events

» Composition of large systems from small ones, hierarchical
structuring

» Different modes of interaction: synchronous/asynchronous,
state-based/event-based

» Sometime additional syntax may be required



Automata can Model many Phenomena and Devices

Software, hardware,
ATMs, user interfaces
Administrative procedures
Communication protocols

Cooking recipes, Manufacturing instructions
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Any process that can be viewed as a sequence of steps

But what can we do with these models?

v

» There are no analytical tools as in continuous systems

» We can simulate and sometimes do formal verification



What is Verification 7

v

Given a complex discrete dynamical system with some
uncontrolled inputs or unknown parameters

v

Check whether ALL its behaviors satisfy some properties

v

Properties:

» Never reach some part of the state space

Always come eventually to some (equilibrium) state
Never exhibit some pattern of behavior
Quantitative versions of such properties..
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Existing tools can do this type of analysis for huge systems by
sophisticated graph algorithms



[llustration: The

Coffee Machine

» Consider a machine that takes money and distributes drinks

» The system is built from two subsystems, one that takes care
of financial matters, and one which handles choice and
preparation of drinks

» They communicate by sending messages

coin-out

st-coffee

| st-tea

, req-coffee

req-tea



Automaton Models

» The two systems are models as automata (state-transition
systems)

» transitions are triggered by external events and events coming
from the other subsystem

M; M,
coin-in/ ok drink-ready/done |
-
0 | 1 c
-¢

done/ Y

A ok/ o req-coffee/st-coffee
>
A | B

cancel/coin-out, reset i

reset/ req-tea/st-tea

drink-ready/done |




The Global Model

» The behavior of the whole system is captured by a
composition (product) M || My of the components

> States are elements of the Cartesian product of the respective
sets of states, indicating the state of each component

» Some transitions are independent and some are synchronized,
taken by the two components simultaneously

» Behaviors of the systems are paths in this transition graph




Normal Behaviors

drink-ready/

req-coffee/st-coffee

coin-in/ cancel/coin-out

- cancel/coin-out
cancel/coin-out

req-tea/st-tea

drink-ready/

» Customer puts coin, then sees the bus arriving, cancels and
gets the coin back

0A coin-in 1B cancel coin-out 0A

» Customer inserts coin, requests coffee, gets it and the systems
returns to initial state

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A



An Abnormal Behavior

drink-ready/

req-cotfee/st-coffee

coin-in/ cancel /coin-out

cancel/coin-out cancel/coin-out

req-tea/st-tea

drink-ready/

» Suppose the customer presses the cancel button after the
coffee starts being prepared..

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C
drink-ready 0A

» Not so attractive for the owner of the machine



Fixing the Bug

» When M, starts preparing coffee it emits a lock signal
» When M received this message it enters a new state where
cancel is refused

My M,

coin-in/ ok lock/ drink-ready/done
- .

? cancel/coin-out, reset

[A
done/

req-coffee/st-coffee lock

req-tea/st-tea,lock

drink-ready/done

drink-ready

coin-in/

drink-ready/



The Moral of the Story |

v

Many complex systems can be modeled as a composition of

interacting automata

» Behaviors of the system correspond to paths in the global
transition graph of the system

» The size of this graph is exponential in the number of
components (state explosion, curse of dimensionality)

» These paths are labeled by input events representing
influences of the outside environment

» Each input sequence may generate a different behavior

» We want to make sure that a system responds correctly to all

conceivable inputs, that it behaves properly in any
environment (robustness)



The Moral of the Story Il

» How to ensure that a system behaves properly in the presence
of all conceivable inputs and parameters?

» For every individual input sequence or parameter value we can
simulate the reaction of the system. But we cannot do it
exhaustively

» Verification is a collection of automatic and semi-automatic
methods to analyze all the paths in the graph

» This is hard for humans to do and even for computers

» And this type of analysis and way of looking at phenomena is
our potential contribution to Biology



Hybrid Systems: Motivation

» Hybrid systems combine the discrete dynamics of automata
with continuous dynamics defined by differential equations

» Each state may correspond to a mode of a system (a gene is
on, a valve/heater is closed, the car is in a second gear)



Hybrid Systems: Motivation

» Hybrid systems combine the discrete dynamics of automata
with continuous dynamics defined by differential equations

» Each state may correspond to a mode of a system (a gene is
on, a valve/heater is closed, the car is in a second gear)
» In each state there is a different continuous dynamics

» The system may switch between modes according to the
values of the continuous variables

» For example, the heater is turned off when temperature is
high, a valve is opened when the water level crosses a
threshold



Hybrid Systems Analysis is Difficult

» Purely continuous systems (especially linear ones) admit a lot
of mathematical analysis techniques

» Hybrid systems are much harder to analyze because switching
breaks their nice mathematical properties



Hybrid Systems Analysis is Difficult

» Purely continuous systems (especially linear ones) admit a lot
of mathematical analysis techniques

» Hybrid systems are much harder to analyze because switching
breaks their nice mathematical properties

» New techniques inspired by discrete verification are being
developed

» Combination of numerical analysis, graph algorithms and
computational geometry



Verification for Continuous Systems

» The problem: a dynamical system % = f(x, p, u) where u is an
external disturbance and p is a parameter

» Both u and p are not known exactly but are bounded



Verification for Continuous Systems

» The problem: a dynamical system % = f(x, p, u) where u is an
external disturbance and p is a parameter

» Both u and p are not known exactly but are bounded

» Can something be said about all the possible behaviors of the
system for all range of parameters and all external
disturbances?



Verification for Continuous Systems

» A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

» Can replace an infinite number of simulations



Verification for Continuous Systems
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» Useful for Biological models where exact parameters are hard
or impossible to obtain



Verification for Continuous Systems

» A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

» Can replace an infinite number of simulations

» Useful for Biological models where exact parameters are hard
or impossible to obtain

» State-of the-art: tools at various levels of sophistication and
maturity can analyze linear systems with hundreds of state
variables, as well as small nonlinear ones



Reachability for Nonlinear Systems

» New algorithms for computing tubes of trajectories for
systems defined by nonlinear differential equations

» Using new dynamic hybridization methods we can analyze
nontrivial nonlinear systems

» Biological models: Lac operon (6 state variables) aging model
(9 state variables)



Lac Operon
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On Levels of Abstraction

» A phenomenon can be described at different levels of
abstraction and granularity

» Each level presents a trade-off in expressivity, accuracy and
complexity of analysis

» When we consider processes inside the cell we encounter
typically two major classes of models:

» Evolution of protein concentrations (real numbers) following
laws of mass action (continuous dynamical systems)

» Discrete descriptions: the presence of A leads to the
appearance of B which, eventually suppresses C

» | claim that not all the spectrum of possible model classes
between these two has been explored



Timed Systems

» An extremely-important level of abstraction between the
discrete and the continuous

» Continuous description: how the concentration of some
product evolves over time

» Discrete description: the product level moves from low to high

» Timed description: the product level moves from low to high
and this process takes between 3 and 5 hours to complete

» This is how we reason about our travel plans, workshop
schedules and almost everything in daily life

» At this level the dynamical models are timed automata,
automata with auxiliary clock variables



The Case for Timed Models

» Such timed discrete models will, perhaps, give a good
complexity /informativeness trade-off
» This claim is illustrated (not demonstrated) using two
meta-modeling case studies
» Adding time to the purely-discrete models of genetic regulatory
networks
» Deriving timed models from continuous models (multi-affine
differential equations)
» In both cases, some weaknesses of purely-discrete models are
avoided

» These are proofs of concept and a lot of work remains to be
done in order to improve accuracy and reduce complexity



Genetic Regulatory Networks for (and by) Dummies
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A set G ={gi,...,gn} of genes

A set P={p1,...,pn} of products (proteins)

Each gene is responsible for the production of one product
Genes activations are viewed as Boolean variables (On/Off)
When g; = 1 it will tend to increase the quantity of p;
When g; = 0 the quantity of p; will decrease (degradation)

Feedback from products concentrations to genes: when the
quantity of a product is below/above some threshold it may
set one or more genes on or off



Continuous and Discrete Models of Genetic Networks

» Product quantities can be viewed as integer (quantity) or real
(concentration) numbers
» The system can be viewed as a hybrid automaton with

discrete states corresponding to combinations of gene
activations states

» The evolution of product concentrations can be described
using differential equations

» Alternatively, the domain of these concentrations can be
discretized into a finite (and small) number of ranges

» The most extreme of these discretizations is to consider a
Boolean domain {0, 1} indicating present or absent



The Discrete Model of R. Thomas

» Gene activation is specified as a Boolean function over the
presence/absence of products

» When a gene changes its value, its corresponding product will
follow within some unspecified delay

» The resulting model is equivalent to an asynchronous
automaton

» The relative speeds of producing different products are not
modeled

» The model admits many behaviors which are not possible if
these speeds are taken into account

» We add this timing information in a systematic manner, as we
did in the past for asynchronous digital circuits [Maler and
Pnueli 95]



Boolean Delay Networks

fi 2] f3 fa

l & 22 g3 &n

o ] [ ]

» A change in the activation of a gene is considered
instantaneous once the value of f has changed

» This change is propagated to the product within a
non-deterministic but bi-bounded delay specified by an interval



The Delay Operator

» For each i we define a delay operator D;, a function from
Boolean signals to Boolean signals characterized by 4
parameters

pi|g||pi| A
0|o0f]o —
0|1 |[1 [0, ul]
1 (0|0 |["uY]
111 —

» When p; # gi, p; will catch up with g; within t € [IT, u']
(rising) or t € [I*, u'] (falling)



The Delay Operator

" | | | [RSE! A |
I I I I I s LN I N -l I
| | | | | FURRRE | e
I : I 1 ~ 4
I | I I | | I
I I I I I I I
Pi I L Pi | | | |
L
| | | | Lo | | |
I I I I I I I I I
I I I I I I I I I I
t t+dl t t'+dl t t+ 1 e+l t+ 1t 4l
Determinisitc Nondeterministic

» The semantics of the network is the set of all Boolean signals
satisfying the following set of signal inclusions

8i = f}(pla e '7pn)
pi € Di(gi)



Modeling with Timed Automata

» For each equation g; = fi(p1, . ..

z f(p1s...,

, Pn) We build the automaton

pn)=1 P

» For each delay inclusion p; €

&p ex

f(p1,-.-,

pn) =0

Di(g;) we build the automaton

&p

» Composing these automata we obtain a timed automaton
whose semantics coincides with that of the system of signal

inclusions



The Delay Automaton

» The automaton has two stable states gp and gp where the
gene and the product agree

» When g changes (excitation) the automaton moves to the
unstable state and resets a clock to zero

» It can stay in an unstable state as long as ¢ < v and can
stabilize as soon as ¢ > /.

g=1/ g=0/
—0 c:=0

c<ut




Expressing Temporal Uncertainty

» In this automaton the uncertainty interval [/, u] is expressed
by the non-punctual intersection of the guard ¢ > [ and the
invariant ¢ < u

» An alternative representation: making the stabilization
transition deterministic and accompany the excitation
transition with a non-deterministic reset

&P c> 1 ap &p c=ul gp
c<ul c<ul
g=0/
g=1/ g=0 c:=1[0,ul — 1]
c:=0 g=1/
c c:=[0,ul —11]
gp > gp 3 c=ut gp




Where do Delay bounds Come From?

» These are abstractions of continuous growth and decay
processes indicating the time it takes to move between points
in domains p® = [0, 6] and p! = [6,1]

» For example, for constant rates k! and k! the bounds will be
D' =1[0,0/k"] and D' = [0,60/k']

P P

» In any case, if we want the abstraction to be conservative we
should have a zero lower bound

» And this smells of Zenonism...



To Zeno or not to Zeno?

» Consider a negative feedback loop where the presence of p
turns g off and its absence turns g on

4
P

c<ut

» Among the behaviors that the automaton may exhibit, if we
allow a zero lower bound, is a zero time cycle

» Whether this is considered a bug or a feature depends on
one's point of view

» This is related to the fundamental difference between the
discrete and the continuous



Zenonism from a Continuous Point of View

» The continuous model of the negative feedback loop is a
one-dimensional vector field pointing to an equilibrium point 6

,
———
|
0

» In “reality” the value of p will have small oscillations around 6
which is normal. Not much difference between 6, 6 +¢, 0 — ¢

» Discrete abstraction amplifies this difference. The inverse
image of the oscillating Boolean signal contains also large
oscillations




Regrets and Abortions

» Another point in favor of a zero lower bound:

» Suppose g changes, triggers a change in p and then switches
back before p has stabilized, aborting the process

&p c=ul &p

c<ul P P
f:zzl[(/).,ﬂ] §=0/ f:r:::O[(/).ul] §=1 (4 /\/

gp c=ut gp —

> In the “stable” state there is a decay process inside p°
» Without additional clocks we do not now for how long

» Has the p level returned to the “nominal” low value or is still
close to the threshold?



Multi-Valued Models

» The incompatibility between the discrete and the continuous
is an eternal problem

» lts effect on modeling and analysis can be reduced
significantly using multi-valued discrete models

» Instead of {0,1} we use {0,1,...,m— 1} which, via a set
0<b1 < <...,<Bp_1 <1 of thresholds, defines every
discrete state as

p = [0;,0i41]

> If you just entered p’ from p'~1, you need to cross the whole
p' in order to reach p*!



Multi-Valued Delay Operator

» The delay operator for multiple values will have 2(m — 1)
parameters in each direction.

» When g =1, p will progress toward the next level and vice

versa
g |p P A g |p P A
0 |o 0 - 1 ]o 1 i, ud]
0 |1 0 | [hu] 11 2|y
0 |2 1 [, ud] 1|2 3 [, ul]
0 [m—1|m=2[ vt Jdfl1 |[m=1|m-1| -

/T = min{t : 0; LN (9,'+1} uT = max{t : 0; LN (9,'+1}

i i

I,.i = min{t : 6; LN 0i—1} u,-l = max{t : 6; LN 0i—1}



The Automaton for the Multi-Valued Model

=)/

=[0,us T —1]

» The lower bound for moving from (g, i) to (g, i + 1) depends
on the state from which (g, i) was entered

» If from (g, i — 1) (continuous evolution) then it is /,.T
» If from (g, /) (change of direction) then it is 0

» Zero/Zeno cycles can happen only among neighbors /,i + 1



The Global Automaton

» We then compose all these automata to obtain a global timed
automaton with n clocks and roughly 2" discrete states

» This automaton represents all the behaviors of the network
while taking timing into account

» Existing tools can take a description of such a timed
automaton and compute all the possible behaviors under all
choices of delays

» We use our IF toolbox and demonstrate its capabilities on
several examples

» Not much biological significance at this point (no
experimental delay values available)



Example: Transcription Cascade for E. Coli
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From Continuous Systems To Automata |

» Consider again a continuous dynamical system x = f(x)
defined over X C R"

» A popular (and old) approach for analyzing such systems
(qualitative physics, robotics motion planning, etc.) is to
approximate it by a finite-state automaton as follows:

» Impose a finite partition N = {Py,... Pt} on X

» Define an automaton with state space [1 and transition
relation § such that

» (P,P’) € ¢ iff P and P’ are adjacent and there are points
x € P and x’ € P’ and a trajectory leading from x to x’

» The latter fact can be sometimes determined easily by
analyzing f on the boundary between P and P’



From Continuous Systems To Automata Il

Py P3
Py Py

» Once you have a finite automaton you are happy because you
can apply all the model-checking algorithms and tools that

you already have
» But there is no free lunch



False Transitivity and Spurious Behaviors

» Such abstract models often exhibit spurious behaviors, that
are not possible in the concrete system

» You may go from x € Py to x’ € P, and from y # x' € P, to
y' € P3 but not necessarily from P; to P3

P Py P3
4 ’

.

» Sometimes the approximation error renders the model useless

i




How to Reduce Spurious Behaviors

» One can see the evolution as a competition between state
variables:

» Who will cross the next threshold in its direction

» A dimension that wins, starts the competition in the next
block from an inferior position and is less likely to win again

/

e

ot




Using Clocks

» We associate a clock ¢; with each dimension which is reset
whenever a boundary is crossed in direction i

» The next transition in the same direction is constrained to
occur when ¢; € [/;, uj]

/ e € [k, uy]

a € lh,ul

» The constants are inferred from the minimal and maximal
value of f; in the corresponding “slice” (slightly circular
reasoning)

» It is easy to compute these min-max values for multi-affine
systems



Current and Future Status

» Prototype implementation, does not work on the fly but
generates the whole model in the IF format

» Not surprisingly, works rather well in monotone parts of the
state space. In parts where some f; admits a zero we need to
be more careful

» Some examples, not yet convincing

» For the more general class of polynomial systems, extremal
values of f; should be computed numerically

» Future: a tighter tool integration, automatic choice of
partition thresholds, model-checking against MITL



Back to the Big Picture

» Biology needs (among other things) more dynamic models to
form verifiable predictions

» These models can benefit from the accumulated
understanding of dynamical system within informatics and
cannot rely only on 19th century mathematics

» The views of dynamical system developed within informatics
are, sometimes, more adapted to the complexity and
heterogeneity of Biological phenomena

» Biological modeling should be founded on various types of
dynamical models: continuous, discrete, hybrid and timed

» These models should be strongly supported by computerized
analysis tools offering a range of capabilities from simulation
to verification and synthesis



Back to the Big Picture

» Systems Biology should combine insights from:

» Engineering disciplines: modeling and analysis of very complex
man-made systems (chips, control systems, software,
networks, cars, airplanes, chemical plants)

» Physics: experience in mathematical modeling of natural
systems with measurement constraints

» Mathematics and Informatics as a unifying theoretical
framework



Thank You



