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Systems Biology

I Systems Biology: the new gold rush for many mathematical
and technical disciplines

I Biophysics, Biomatics, Bioinformatics, Biostatistics...
I The generic template:

I I do X (for my pleasure, because I studied it, that’s what I
know) but... X can also be useful for Biology

I So Here I am, presenting my own X , a certain species of
Informatics / Computer Science

I My X is based on automata as dynamical systems with
excursions into hybrid dynamics (automata plus differential
equations) and timed dynamics (automata plus quantitative
time) as an intermediate level of abstraction

I When you have a hammer, everything looks like a nail



Summary

I Informatics is more than technology, it is also a kind of
mathematics/physics

I Automata as dynamical systems

I Verification illustrated

I Between the discrete and the continuous
I Timed models and their applications

I Adding time to discrete models of genetic regulatory networks
I From continuous to timed systems (the technical contribution

of the paper in the proceedings)

I Back to the big picture



Computer Technology

I Computers, Networks, Operating Systems, Data-Bases, Web,
Search Engines, Graphics,

I Embedded Systems, Sensors, Programming Languages, Word
Processing, Computer Control, Robotics, Security ..

I Influence on all domains of human activity, including Biology:

I String Processing for DNA, Statistical Computations,
Simulation, Animation

I Date-Bases, Micro-Arrays, Ontologies and Description
Languages

I Communication and Data Sharing, Lab Management

In all those activities the computer is a useful material tool in the
service of others



A More Noble Role, Perhaps

I Biology seems to be trying to go through a kind of Newtonian
revolution

I The essence of such revolution is to upgrade (as much as
possible) descriptive “models” by dynamic models with
stronger predictive power and refutability

I Classical models of dynamical systems are clearly not
sufficient for effective modeling of biological phenomena

I Models, insights and computer-based analysis tools developed
within Informatics can help



What Is Informatics ?

I Among other things informatics is: the (pure and applied)
study of discrete-event dynamical systems (automata,
transition systems)

I A natural point of view for the “reactive systems” parts of
informatics (hardware, protocols, real-time, stream processing)

I Especially for people working on modeling and verification of
such systems

I Sometimes obscured (intentionally or not) by fancy
formalisms: Petri nets, process algebras, rewriting systems or
temporal logics..

I All honorable topics with intrinsic importance, beauty, etc.

I But sometimes should be distilled to their essence in order to
make sense for potential users from other disciplines (rather
than frighten/impress them)



Dynamical System Models in General

I State variables whose set of valuations determine the state
space

I Time domain along which these values evolve

I Dynamic law which says how state variables evolve over time,
possibly under the influence of external factors

I System behaviors are progressions of states in time

I Having such a model, knowing an initial state x(0) one can
predict, to some extent, the value of x(t)

I

I Remark: Variables in Biology can be of various natures and
granularities (concentrations, states of individual molecules,
stages in processes, etc.)



Classical Dynamical Systems

I State variables: real numbers (location, velocity, energy,
voltage, concentration)

I Time domain: the real time axis R or a discretization of it

I Dynamic law: differential equations

ẋ = f (x , u)

or their discrete-time approximations

x(t + 1) = f (x(t), u(t))

I Behaviors: trajectories in the continuous state space

I Achievements: Apples, Stars, Missiles, Electricity, Heat,
Chemical processes

I Theorems, Papers, Simulation tools



Automata as Dynamical Systems

I Abstract discrete state space, state variables need not have a
numerical meaning

I Logical time domain defined by the events (order but not
metric)

I Dynamics defined by transition tables: input event a takes the
system from state s to state s′

I Behaviors are sequences of states and events

I Composition of large systems from small ones, hierarchical
structuring

I Different modes of interaction: synchronous/asynchronous,
state-based/event-based

I Sometime additional syntax may be required



Automata can Model many Phenomena and Devices

I Software, hardware,

I ATMs, user interfaces

I Administrative procedures

I Communication protocols

I Cooking recipes, Manufacturing instructions

I Any process that can be viewed as a sequence of steps

I But what can we do with these models?

I There are no analytical tools as in continuous systems

I We can simulate and sometimes do formal verification



What is Verification ?

I Given a complex discrete dynamical system with some
uncontrolled inputs or unknown parameters

I Check whether ALL its behaviors satisfy some properties
I Properties:

I Never reach some part of the state space
I Always come eventually to some (equilibrium) state
I Never exhibit some pattern of behavior
I Quantitative versions of such properties..

I Existing tools can do this type of analysis for huge systems by
sophisticated graph algorithms



Illustration: The Coffee Machine

I Consider a machine that takes money and distributes drinks

I The system is built from two subsystems, one that takes care
of financial matters, and one which handles choice and
preparation of drinks

I They communicate by sending messages

M1

5

4

6

M2

drink-ready

st-tea

st-coffee

3

2

1

coin-in

cancel

coin-out

7

8

9

req-coffee

req-tea

reset

ok

done



Automaton Models

I The two systems are models as automata (state-transition
systems)

I transitions are triggered by external events and events coming
from the other subsystem

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

done/

0 1

coin-in/ ok

cancel/coin-out, reset

M1



The Global Model

I The behavior of the whole system is captured by a
composition (product) M1 ‖ M2 of the components

I States are elements of the Cartesian product of the respective
sets of states, indicating the state of each component

I Some transitions are independent and some are synchronized,
taken by the two components simultaneously

I Behaviors of the systems are paths in this transition graph

done/

0 1

coin-in/ ok

cancel/coin-out, reset

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

M1



Normal Behaviors

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Customer puts coin, then sees the bus arriving, cancels and
gets the coin back

0A coin-in 1B cancel coin-out 0A

I Customer inserts coin, requests coffee, gets it and the systems
returns to initial state

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A



An Abnormal Behavior

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Suppose the customer presses the cancel button after the
coffee starts being prepared..

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C

drink-ready 0A

I Not so attractive for the owner of the machine



Fixing the Bug

I When M2 starts preparing coffee it emits a lock signal

I When M1 received this message it enters a new state where
cancel is refused

M1

0 1

coin-in/ ok

2

lock/

cancel/coin-out, reset

done/

drink-ready/done

drink-ready/done

A

C

B

D

reset/

req-coffee/st-coffee,lock

req-tea/st-tea,lock

M2

ok/

0A 1B

drink-ready/

2C

2D

coin-in/

cancel/coin-out req-tea/st-tea

req-coffee/st-coffee

drink-ready/



The Moral of the Story I

I Many complex systems can be modeled as a composition of
interacting automata

I Behaviors of the system correspond to paths in the global
transition graph of the system

I The size of this graph is exponential in the number of
components (state explosion, curse of dimensionality)

I These paths are labeled by input events representing
influences of the outside environment

I Each input sequence may generate a different behavior

I We want to make sure that a system responds correctly to all
conceivable inputs, that it behaves properly in any
environment (robustness)



The Moral of the Story II

I How to ensure that a system behaves properly in the presence
of all conceivable inputs and parameters?

I For every individual input sequence or parameter value we can
simulate the reaction of the system. But we cannot do it
exhaustively

I Verification is a collection of automatic and semi-automatic
methods to analyze all the paths in the graph

I This is hard for humans to do and even for computers

I And this type of analysis and way of looking at phenomena is
our potential contribution to Biology



Hybrid Systems: Motivation

I Hybrid systems combine the discrete dynamics of automata
with continuous dynamics defined by differential equations

I Each state may correspond to a mode of a system (a gene is
on, a valve/heater is closed, the car is in a second gear)

I In each state there is a different continuous dynamics

I The system may switch between modes according to the
values of the continuous variables

I For example, the heater is turned off when temperature is
high, a valve is opened when the water level crosses a
threshold
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Hybrid Systems Analysis is Difficult

I Purely continuous systems (especially linear ones) admit a lot
of mathematical analysis techniques

I Hybrid systems are much harder to analyze because switching
breaks their nice mathematical properties

I New techniques inspired by discrete verification are being
developed

I Combination of numerical analysis, graph algorithms and
computational geometry
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Verification for Continuous Systems

I The problem: a dynamical system ẋ = f (x , p, u) where u is an
external disturbance and p is a parameter

I Both u and p are not known exactly but are bounded

I Can something be said about all the possible behaviors of the
system for all range of parameters and all external
disturbances?

x0 x0
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Verification for Continuous Systems

I A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

x0x0
x0

I Can replace an infinite number of simulations

I Useful for Biological models where exact parameters are hard
or impossible to obtain

I State-of the-art: tools at various levels of sophistication and
maturity can analyze linear systems with hundreds of state
variables, as well as small nonlinear ones



Verification for Continuous Systems

I A kind of set-based numerical integration to approximate the
set of states reachable by all possible inputs and parameters

x0x0
x0

I Can replace an infinite number of simulations

I Useful for Biological models where exact parameters are hard
or impossible to obtain

I State-of the-art: tools at various levels of sophistication and
maturity can analyze linear systems with hundreds of state
variables, as well as small nonlinear ones



Verification for Continuous Systems
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Reachability for Nonlinear Systems

I New algorithms for computing tubes of trajectories for
systems defined by nonlinear differential equations

I Using new dynamic hybridization methods we can analyze
nontrivial nonlinear systems

I Biological models: Lac operon (6 state variables) aging model
(9 state variables)



Lac Operon

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ− Of )− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ− Of )

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE



On Levels of Abstraction

I A phenomenon can be described at different levels of
abstraction and granularity

I Each level presents a trade-off in expressivity, accuracy and
complexity of analysis

I When we consider processes inside the cell we encounter
typically two major classes of models:

I Evolution of protein concentrations (real numbers) following
laws of mass action (continuous dynamical systems)

I Discrete descriptions: the presence of A leads to the
appearance of B which, eventually suppresses C

I I claim that not all the spectrum of possible model classes
between these two has been explored



Timed Systems

I An extremely-important level of abstraction between the
discrete and the continuous

I Continuous description: how the concentration of some
product evolves over time

I Discrete description: the product level moves from low to high

I Timed description: the product level moves from low to high
and this process takes between 3 and 5 hours to complete

I This is how we reason about our travel plans, workshop
schedules and almost everything in daily life

I At this level the dynamical models are timed automata,
automata with auxiliary clock variables



The Case for Timed Models

I Such timed discrete models will, perhaps, give a good
complexity/informativeness trade-off

I This claim is illustrated (not demonstrated) using two
meta-modeling case studies

I Adding time to the purely-discrete models of genetic regulatory
networks

I Deriving timed models from continuous models (multi-affine
differential equations)

I In both cases, some weaknesses of purely-discrete models are
avoided

I These are proofs of concept and a lot of work remains to be
done in order to improve accuracy and reduce complexity



Genetic Regulatory Networks for (and by) Dummies

I A set G = {g1, . . . , gn} of genes

I A set P = {p1, . . . , pn} of products (proteins)

I Each gene is responsible for the production of one product

I Genes activations are viewed as Boolean variables (On/Off)

I When gi = 1 it will tend to increase the quantity of pi

I When gi = 0 the quantity of pi will decrease (degradation)

I Feedback from products concentrations to genes: when the
quantity of a product is below/above some threshold it may
set one or more genes on or off



Continuous and Discrete Models of Genetic Networks

I Product quantities can be viewed as integer (quantity) or real
(concentration) numbers

I The system can be viewed as a hybrid automaton with
discrete states corresponding to combinations of gene
activations states

I The evolution of product concentrations can be described
using differential equations

I Alternatively, the domain of these concentrations can be
discretized into a finite (and small) number of ranges

I The most extreme of these discretizations is to consider a
Boolean domain {0, 1} indicating present or absent



The Discrete Model of R. Thomas

I Gene activation is specified as a Boolean function over the
presence/absence of products

I When a gene changes its value, its corresponding product will
follow within some unspecified delay

I The resulting model is equivalent to an asynchronous
automaton

I The relative speeds of producing different products are not
modeled

I The model admits many behaviors which are not possible if
these speeds are taken into account

I We add this timing information in a systematic manner, as we
did in the past for asynchronous digital circuits [Maler and
Pnueli 95]



Boolean Delay Networks

· · · fnf3f2f1

g1 g2 g3
gn

D2D1 D3 Dn
· · ·

· · ·

p1 p2 p3 pn

I A change in the activation of a gene is considered
instantaneous once the value of f has changed

I This change is propagated to the product within a
non-deterministic but bi-bounded delay specified by an interval



The Delay Operator

I For each i we define a delay operator Di , a function from
Boolean signals to Boolean signals characterized by 4
parameters

pi gi p′i ∆

0 0 0 −
0 1 1 [l↑, u↑]
1 0 0 [l↓, u↓]
1 1 1 −

I When pi 6= gi , pi will catch up with gi within t ∈ [l↑, u↑]
(rising) or t ∈ [l↓, u↓] (falling)



The Delay Operator

t t + l↑ t + u↑ t′ t′ + l↓ t′ + u↓

gi

pi

Nondeterministic

t t′t + d↑

gi

pi

t′ + d↓

Determinisitc

I The semantics of the network is the set of all Boolean signals
satisfying the following set of signal inclusions

gi = fi (p1, . . . , pn)
pi ∈ Di (gi )



Modeling with Timed Automata

I For each equation gi = fi (p1, . . . , pn) we build the automaton

g gf (p1, . . . , pn) = 1

f (p1, . . . , pn) = 0

I For each delay inclusion pi ∈ Di (gi ) we build the automaton

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0

I Composing these automata we obtain a timed automaton
whose semantics coincides with that of the system of signal
inclusions



The Delay Automaton

I The automaton has two stable states gp and gp where the
gene and the product agree

I When g changes (excitation) the automaton moves to the
unstable state and resets a clock to zero

I It can stay in an unstable state as long as c < u and can
stabilize as soon as c > l .

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0



Expressing Temporal Uncertainty

I In this automaton the uncertainty interval [l , u] is expressed
by the non-punctual intersection of the guard c ≥ l and the
invariant c < u

I An alternative representation: making the stabilization
transition deterministic and accompany the excitation
transition with a non-deterministic reset

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑ − l↑]
g = 1/

g = 0/
c := [0, u↓ − l↓]

c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

g = 1/

c := 0

g = 0/
c := 0



Where do Delay bounds Come From?

I These are abstractions of continuous growth and decay
processes indicating the time it takes to move between points
in domains p0 = [0, θ] and p1 = [θ, 1]

I For example, for constant rates k↑ and k↓ the bounds will be
D↑ = [0, θ/k↑] and D↓ = [0, θ/k↓]

θ

p

t
u↓

Decay

p1

p0

θ

t

p

u↑

Production

p0

p1

I In any case, if we want the abstraction to be conservative we
should have a zero lower bound

I And this smells of Zenonism...



To Zeno or not to Zeno?

I Consider a negative feedback loop where the presence of p
turns g off and its absence turns g on

g

D

p

¬p

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑] c := [0, u↓]

I Among the behaviors that the automaton may exhibit, if we
allow a zero lower bound, is a zero time cycle

I Whether this is considered a bug or a feature depends on
one’s point of view

I This is related to the fundamental difference between the
discrete and the continuous



Zenonism from a Continuous Point of View
I The continuous model of the negative feedback loop is a

one-dimensional vector field pointing to an equilibrium point θ

θ

I In “reality” the value of p will have small oscillations around θ
which is normal. Not much difference between θ, θ + ε, θ − ε

I Discrete abstraction amplifies this difference. The inverse
image of the oscillating Boolean signal contains also large
oscillations

p

p0

p1

θ

t

t

p1

p0

θ

p



Regrets and Abortions

I Another point in favor of a zero lower bound:

I Suppose g changes, triggers a change in p and then switches
back before p has stabilized, aborting the process

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

g = 0/
c := [0, u↓]

g = 1/
c := [0, u↑]

g = 1/g = 0/
θ

gp

p

gp gp gp

p

gpgp

I In the “stable” state there is a decay process inside p0

I Without additional clocks we do not now for how long

I Has the p level returned to the “nominal” low value or is still
close to the threshold?



Multi-Valued Models

I The incompatibility between the discrete and the continuous
is an eternal problem

I Its effect on modeling and analysis can be reduced
significantly using multi-valued discrete models

I Instead of {0, 1} we use {0, 1, . . . ,m − 1} which, via a set
0 < θ1 < θ2 < . . . , < θm−1 < 1 of thresholds, defines every
discrete state as

pi = [θi , θi+1]

0 . . . θm−1

p0 p1 p2 pm−1. . .

θ2θ1

I If you just entered pi from pi−1, you need to cross the whole
pi in order to reach pi+1



Multi-Valued Delay Operator

I The delay operator for multiple values will have 2(m − 1)
parameters in each direction.

I When g = 1, p will progress toward the next level and vice
versa

g p p′ ∆ g p p′ ∆

0 0 0 − 1 0 1 [l↑0 , u
↑
0 ]

0 1 0 [l↓1 , u
↓
1 ] 1 1 2 [l↑1 , u

↑
1 ]

0 2 1 [l↓2 , u
↓
2 ] 1 2 3 [l↑2 , u

↑
2 ]

. . . . . . . . . . . . . . . . . . . . . . . .

0 m − 1 m − 2 [l↓m−1, u
↓
m−1] 1 m − 1 m − 1 −

l↑i = min{t : θi
t−→ θi+1} u↑i = max{t : θi

t−→ θi+1}
l↓i = min{t : θi

t−→ θi−1} u↓i = max{t : θi
t−→ θi−1}



The Automaton for the Multi-Valued Model

0 . . . θm−1

p0 p1 p2 pm−1. . .

θ2θ1

c < u↓2

(g , 2)

(g , 2)

g = 0/

c < u↑2c < u↑0

(g , 0)

(g , 0)

g = 0/

c < u↓1

(g , 1)

(g , 1)

c := [0, u↓1 ]
g = 0/

c := [0, u↓2 ]

c < u↑1

c = u↑0 / c = u↑1 / c = u↑2 /

c = u↓3 /c = u↓2 /c = u↓1

g = 1/
c := [0, u↑2 ]

g = 1/
c := [0, u↑1 ]

g = 1/
c := [0, u↑0 ]

c := [0, u↓2 − l↓2 ]c := [0, u↓1 − l↓1 ]

c := [0, u3 ↑ −l↑3 ]c := [0, u2 ↑ −l2 ↑]c := [0, u↑1 − l↑1 ]
· · ·

· · ·

I The lower bound for moving from (g , i) to (g , i + 1) depends
on the state from which (g , i) was entered

I If from (g , i − 1) (continuous evolution) then it is l↑i
I If from (g , i) (change of direction) then it is 0

I Zero/Zeno cycles can happen only among neighbors i ,i + 1



The Global Automaton

I We then compose all these automata to obtain a global timed
automaton with n clocks and roughly 2n discrete states

I This automaton represents all the behaviors of the network
while taking timing into account

I Existing tools can take a description of such a timed
automaton and compute all the possible behaviors under all
choices of delays

I We use our IF toolbox and demonstrate its capabilities on
several examples

I Not much biological significance at this point (no
experimental delay values available)



Example: Transcription Cascade for E. Coli

TetR LacI EYFPCI

aTc

tetR lacI cI eyfp

10000

10001

(EYFP:=1) 

10010

(CI:1) 

11000

(TetR:=1) 

10100

(LacI:=1) 

10011

(CI:=1) 

11001

(TetR:=1) 

10101

(LacI:=1) 

11010

(TetR:=1) 

10110

(LacI:=1) 

(EYFP:=1) 

(CI:=1) 

11100

(LacI:=1) 

(EYFP:=1) (TetR:=1) 

(EYFP:=0) 

11011

(TetR:=1) 

10111

(LacI:=1) (CI:=1) 

11101

(LacI:=1) 

(TetR:=1) 

11110

(LacI:=1) (TetR:=1) 

00101

(CI:=0) 

(EYFP:=1) 

(EYFP:=0) 

11111

(LacI:=1) 

(CI:=0) 

(EYFP:=0) (TetR:=1) 

(CI:=0) (EYFP:=1) (TetR:=1) (CI:=0) 

(EYFP:=0) 



From Continuous Systems To Automata I

I Consider again a continuous dynamical system ẋ = f (x)
defined over X ⊆ Rn

I A popular (and old) approach for analyzing such systems
(qualitative physics, robotics motion planning, etc.) is to
approximate it by a finite-state automaton as follows:

I Impose a finite partition Π = {P1, . . .Pk} on X

I Define an automaton with state space Π and transition
relation δ such that

I (P,P ′) ∈ δ iff P and P ′ are adjacent and there are points
x ∈ P and x ′ ∈ P ′ and a trajectory leading from x to x ′

I The latter fact can be sometimes determined easily by
analyzing f on the boundary between P and P ′



From Continuous Systems To Automata II

P1 P3

P2 P4

P1

P2
P4

P3

I Once you have a finite automaton you are happy because you
can apply all the model-checking algorithms and tools that
you already have

I But there is no free lunch



False Transitivity and Spurious Behaviors

I Such abstract models often exhibit spurious behaviors, that
are not possible in the concrete system

I You may go from x ∈ P1 to x ′ ∈ P2 and from y 6= x ′ ∈ P2 to
y ′ ∈ P3 but not necessarily from P1 to P3

x

x′

y

y′

P1 P2 P3

P1 P2 P3

I Sometimes the approximation error renders the model useless



How to Reduce Spurious Behaviors

I One can see the evolution as a competition between state
variables:

I Who will cross the next threshold in its direction

I A dimension that wins, starts the competition in the next
block from an inferior position and is less likely to win again



Using Clocks

I We associate a clock ci with each dimension which is reset
whenever a boundary is crossed in direction i

I The next transition in the same direction is constrained to
occur when ci ∈ [li , ui ]

c2 := 0

c2 ∈ [l2, u2]

c1 ∈ [l1, u1]

c1 := 0

I The constants are inferred from the minimal and maximal
value of fi in the corresponding “slice” (slightly circular
reasoning)

I It is easy to compute these min-max values for multi-affine
systems



Current and Future Status

I Prototype implementation, does not work on the fly but
generates the whole model in the IF format

I Not surprisingly, works rather well in monotone parts of the
state space. In parts where some fi admits a zero we need to
be more careful

I Some examples, not yet convincing

I For the more general class of polynomial systems, extremal
values of fi should be computed numerically

I Future: a tighter tool integration, automatic choice of
partition thresholds, model-checking against MITL



Back to the Big Picture

I Biology needs (among other things) more dynamic models to
form verifiable predictions

I These models can benefit from the accumulated
understanding of dynamical system within informatics and
cannot rely only on 19th century mathematics

I The views of dynamical system developed within informatics
are, sometimes, more adapted to the complexity and
heterogeneity of Biological phenomena

I Biological modeling should be founded on various types of
dynamical models: continuous, discrete, hybrid and timed

I These models should be strongly supported by computerized
analysis tools offering a range of capabilities from simulation
to verification and synthesis



Back to the Big Picture

I Systems Biology should combine insights from:

I Engineering disciplines: modeling and analysis of very complex
man-made systems (chips, control systems, software,
networks, cars, airplanes, chemical plants)

I Physics: experience in mathematical modeling of natural
systems with measurement constraints

I Mathematics and Informatics as a unifying theoretical
framework



Thank You


