
How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

How to translate into SAT such that
SAT solvers have a good time?!

Oliver Kullmann
Computer Science Department

Swansea University

Fourth Workshop on Formal and
Automated Theorem Proving and Applications

Belgrade, February 5, 2011

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Solving hard “combinatorial” problems via
SAT

CNF-SAT solvers work relatively well.

We believe not only in the beauty, but also in the
power and usefulness of CNF.

I consider the question of translating problems into
CNF such that SAT solvers can succeed.

Our focus is on intrinsically hard problems.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Two dimensions

The basic dimensions I am considering in this talk are:
1 The problem instance is already given naturally in

some form of non-boolean CNF, and the task is to
make a boolean CNF out of it.
The fundamental problem here is that of translating
non-boolean values into boolean values.

2 The problem instance is given in the form of the
boolean combination of various boolean black boxes
(i.e., as a generalised circuit, allowing arbitrary
gates), and we have to “flatten” the boxes to CNF.
The fundamental problem here is that of presenting
complex computations via CNFs.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Outline

1 Introduction

2 The generic boolean translation

3 Attacking AES via SAT

4 Towards a general theory of good translations

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Non-boolean clause-sets

The “true” generalisation of boolean CNF to non-boolean
CNF seems to be the following:

1 variables v have (finite) domains Dv

2 literals are of the form “v 6= ε” for some ε ∈ Dv ;
3 these clauses are called “no-goods” in constraint

solving.

For a systematic investigation see
[Kullmann, 2009, Kullmann, 2011a, Kullmann, 2011b].

With these non-boolean clause-sets for example
hypergraph colouring problems and Ramsey-type
problems now have a canonical representation.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

The general idea of the “generic translation”

Consider a variable v with domain Dv = {ε1, . . . , εm}.
So there are m literals, namely (v , ε1), . . . , (v , εm).

And for assignment 〈v → εi〉 exactly m − 1 of these
literals become true, while (v , εi) becomes false.

It wouldn’t matter w.r.t. satisfiability if it would be
possible to set more than one literal to false.

The idea now is to represent these literals by clauses
from a clause-set Fv .

We need to choose m clauses C1, . . . ,Cm ∈ Fv .

Since we must not be able to make all literals to true,
Fv must be unsatisfiable.

We demand all clauses Ci to be necessary for Fv ,
that is, removal renders Fv satisfiable — in this way
we model that all other literals become true.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

More details
The generic boolean translation F ; T (F) for a
non-boolean clause-set F is as follows (using m := |Dv |);

For each variable v , choose unsatisfiable
variable-disjoint boolean clause-sets Fv with at least
m clauses.

Choose different clauses C1, . . . ,Cm ∈ Fv .

Literals “v 6= εi ” are replaced by the clauses Ci .

The “remainder clauses” in Rv := Fv \ {C1, . . . ,Cm}
are all added to the translation.

Note that

n(T (F)) =
∑

v∈var(F)

n(Fv)

c(T (F)) = c(F) +
∑

v∈var(F)

c(Rv).

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Example: The direct translations

Here we choose

Fv =
{
{v1}, . . . , {vm}, {v1, . . . , vm}

}
,

and we choose the unit-clauses to correspond to the
values.

1 For the weak form (using only ALO-clauses) that’s it
(so we have one remainder clause).

2 For the strong form we add all positive binary
clauses to (the remainder of) Fv (so obtaining the
AMO-clauses).

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Example: The simple logarithmic translation

If m = 2p, then choose the (minimally) unsatisfiable
clause-set Fv with p variables and 2p clauses (which
are all the full clauses using all variables).

If m is not a power of two, then for the simple case
just use the smallest p with m < 2p, use the same
Fv , and choose m of these clauses (the remaining
clauses become remainder-clauses).

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

The weak nested translation

Here we use p := m − 1 (boolean) variables v1, . . . , vp

and

Fv =
{
{v1}, {v1, v2}, . . . , {v1, . . . , vp−1, vp}, {v1, . . . , vp}

}
.

There are no remainder clauses.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

First evaluations

Yet we tested these (and other, related) translations only
on Green-Tao instances ([Kullmann, 2010]), but this we
did rather extensively.

Big surprise:

For “large” m the logarithmic translation was best,
and for all other m the weak nested translation —

for all solver types.

“Best” often means by orders of magnitudes.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Attacking AES

AES (“Advanced Encryption Standard”) is the
successor of DES.

AES is a “block cipher”, a basic cryptographic
building block.

AES is a map

AES : {0,1}128 × {0,1}128 → {0,1}128

such that for every key k ∈ {0,1}128 the map
AES(−, k) : {0,1}128 → {0,1}128 is a permutation.

1 Given only a message m ∈ {0,1}128 and its
encryption AES(m, k), it should be hard to find a key
k ′ ∈ K with AES(m, k ′) = AES(m, k).

2 We attack precisely this.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

AES clause-sets

The basic task is to construct

a clause-sets FAES in 3 · 128 = 384 variables
representing the AES-relation.

After substituting 2 · 128 = 256 (boolean) values for plain
text m and cipher text AES(m, k), the satisfying
assignments of the resulting clause-set

(ϕm ∪ ϕAES(m,k)) ∗ FAES

in 128 variables are exactly the possible keys k .

By “ϕ” we typically denote partial (boolean) assignments,
while by ϕ ∗ F for a clause-set F we denote the result of
applying ϕ to F .

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

The basic structure of a block cipher

Let

M be the set of “messages”

K be the set of “keys”.

A block cipher is a map

f : M×K→M

such that for each fixed key k ∈ K the map

m ∈M 7→ f (m, k) ∈M

is a bijection.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

The basic structure of an iterated block cipher

The computation of f proceeds in rounds, so instead of
f (m, k) we write fp(m, k), using the round parameter
p ∈ {0, . . . ,N} with

f0(m, k) = m, fN(m, k) = f (m, k).

For simplicity from now on we assume M = K = {0,1}n.
The recursive equation now is

fp+1(m, k) = R(fp(m, k) + kp)

where

R : M→M is the “round bijection”
kp is given by the “key schedule”:

1 k0 := k
2 kp+1 = S(kp)

for the “key bijection” S : M→M.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Patching up boolean functions

For AES, the round bijection and the key bijection are
defined in terms of “boxes”, which are certain
permutations

S : {0,1}8 → {0,1}8.

These boxes yield boolean functions in 16 variables,

which are represented by clause-sets (using possibly
additional (different) variables),

and which are just put together, yielding FAES.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Representations of boolean functions

A clause-set F , understood as CNF, represents a
boolean function f : {0,1}V → {0,1} if

V ⊆ var(F), and

the set of satisfying total assignments of F , projected
to V , is exactly the set of boolean vectors
x : V → {0,1} with f (x) = 1.

A representation F for f has the unique extension
property if

for every x : V → {0,1} with f (x) = 1 there is (only)
exactly one assignment ϕ : var(F)→ {0,1} with

ϕ ∗ F = >.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Reductions

For clause-sets F ,F ′ the relation F ⊇ 7→ F ′ holds if for all
C ∈ F there is C′ ∈ F ′ with C′ ⊆ C; we say that

F ′ strengthens F .

A reduction in this context is a map r : CLS → CLS such
that for all F ,F ′ ∈ CLS we have

1 r(F) is satisfiability-equivalent to F ;
2 if ⊥ ∈ r(F) and F ′ strengthens F then ⊥ ∈ r(F ′).

A reduction r discovers unsatisfiability of F if ⊥ ∈ r(F).

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Generalised unit-clause propagation

In [Kullmann, 1999, Kullmann, 2004] a hierarchy of
reductions rk has been studied, given by

r0(F) :=

{
{⊥} if ⊥ ∈ F

F else

rk+1(F) :=


〈v → ε〉 ∗ F if ∃ v ∈ var(F), ε ∈ {0,1} :

rk (〈v → ε〉 ∗ F) = {⊥}
F else

r1 is unit-clause propagation.

r2 is (complete) elimination of “failed literals”.

Solving SAT by applying r0, r1, r2, . . . is the true core
of the (infamous) Stalmarck method.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Restricted deduction power

Consider a reduction r .

The relation F `r C holds for a clause-set F and a clause
C, and we say C is deducible from F via r , if

r discovers unsatisfiability of ϕC ∗ F (that is,
⊥ ∈ r(ϕC ∗ F) for ϕC = 〈x 7→ 0 : x ∈ C〉).

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

r -bases

Consider a reduction r : CLS → CLS.

A clause-set F is r -generated if for all clauses C
with F |= C we have F `r C.

More generally, a clause-set F is r -generating for a
boolean function f if F represents f , and if for all
clauses C with f |= C we have F `r C.

F is r -generated iff F is r -generating for the CNF F .

F is an r -base for f if F is minimally r -generating for
f w.r.t. elimination of clauses and literals.

F is r -based if F is an r -base for F .

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

The SAT Representation Hypothesis

The “SRH” is the (not fully specified) statement that the
task of a

“good” representation
of a boolean function f or a clause-set F0,

for the purpose of SAT solving or of refuting F0, both in
polynomial time, is fully captured by

finding an rk -generating clause-set F
for f resp. F0 for some k .

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Some discussion

The smaller k the lower the exponent for the
polynomial in the run-time estimation, but the larger
F is, so a balance is to be sought.

If f is only some part of a bigger function (like for
example the S-box in AES), then f should be made
as large as possible (again, a balance is to be
sought).

The SRH states that the whole business of Extended
Resolution and its various uses is to construct for a given
clause-set F some rk -base for appropriate k ≥ 1 (while
the construction of an r0-base is too expensive).

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Outlook

I The generic translation offers the possibility to
translate each variable individually — for that we
need to really understand what’s going on.

II Attacking AES, we are currently investigating various
kinds of decompositions of the AES-computation, the
various “boxes” resulting, and their effect on SAT
solving.

III Regarding SRH, likely one can prove various
generalities.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Bibliography I

Kullmann, O. (1999).

Investigating a general hierarchy of polynomially decidable
classes of CNF’s based on short tree-like resolution
proofs.

Technical Report TR99-041, Electronic Colloquium on
Computational Complexity (ECCC).

Kullmann, O. (2004).

Upper and lower bounds on the complexity of generalised
resolution and generalised constraint satisfaction
problems.

Annals of Mathematics and Artificial Intelligence,
40(3-4):303–352.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Bibliography II

Kullmann, O. (2009).

Constraint satisfaction problems in clausal form: Autarkies
and minimal unsatisfiability.

Technical Report TR 07-055, version 02, Electronic
Colloquium on Computational Complexity (ECCC).

Kullmann, O. (2010).

Green-Tao numbers and SAT.

In Strichman, O. and Szeider, S., editors, Theory and
Applications of Satisfiability Testing - SAT 2010, volume
6175 of Lecture Notes in Computer Science, pages
352–362. Springer.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

Bibliography III

Kullmann, O. (2011a).

Constraint satisfaction problems in clausal form I:
Autarkies and deficiency.

Fundamenta Informaticae.

To appear.

Kullmann, O. (2011b).

Constraint satisfaction problems in clausal form II: Minimal
unsatisfiability and conflict structure.

Fundamenta Informaticae.

To appear.

How to translate
into SAT such that
SAT solvers have a

good time?!

Oliver Kullmann

Introduction

The generic
boolean translation

Attacking AES via
SAT

Towards a general
theory of good
translations

End

	Introduction
	The generic boolean translation
	Attacking AES via SAT
	Towards a general theory of good translations

