
Probability logics in Coq

Formal verification of key properties for several
probability logics in the proof assistant Coq

Petar Maksimović

petar.maksimovic@gmail.com

Mathematical Institute of the Serbian Academy of Sciences and Arts
Faculty of Technical Sciences, University of Novi Sad

University of Nice Sophia Antipolis
INRIA Sophia Antipolis Méditerranée

Fourth Workshop on Formal and Automated Theorem Proving
and Applications, February 4-5, 2011, Belgrade, Serbia

petar.maksimovic@gmail.com

Probability logics in Coq

1 Probability Logics
The Idea
The Logic LPPQ

2

2 Formalizations in Coq
Formalization of LPPQ

2

Formalizations of other probability logics

3 Directions for Future work

Probability logics in Coq

Probability Logics

The Idea

What is the main idea?

To be able to represent and reason with uncertain knowledge

To extend the classical propositional calculus with expressions
which refer to probability, with the formulas still remaining
either true or false.

We introduce probabilistic operators, such as P≥sα with the
intended meaning ”the probability of α is at least s”.

Many such logics have been developed, the semantics of
which is in the style of Kripke (possible worlds)

Goal: To find a strongly complete (a set of formulas T is
consistent if T is satisfiable) axiomatization for such logics

Probability logics in Coq

Probability Logics

The Idea

Why verify these logics?

To make sure that the proofs of the main meta-theorems are
correct, which is an important question. A formally verified proof of
the strong completeness theorem, for instance, justifies the use of
probabilistic SAT-checkers for problems such as:

determining whether probability estimates placed on certain
events are consistent,
calculating, given probability estimates of certain assumptions,
the probability of the conclusion,

which could arise in various expert systems applying one of the
developed probability logics to fields such as game theory, economy
and medicine.

Formalization of proof techniques. The proof technique which is
used to prove strong completeness, for one, could be re-used, with
some modifications, in situations when a similar technique is
required.

Probability logics in Coq

Probability Logics

The Idea

Why verify these logics?

To make sure that the proofs of the main meta-theorems are
correct, which is an important question. A formally verified proof of
the strong completeness theorem, for instance, justifies the use of
probabilistic SAT-checkers for problems such as:

determining whether probability estimates placed on certain
events are consistent,
calculating, given probability estimates of certain assumptions,
the probability of the conclusion,

which could arise in various expert systems applying one of the
developed probability logics to fields such as game theory, economy
and medicine.

Formalization of proof techniques. The proof technique which is
used to prove strong completeness, for one, could be re-used, with
some modifications, in situations when a similar technique is
required.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The syntax of LPPQ
2

Classical formulas (ForC) – defined as usual

φ – set of propositional letters

Probabilistic formulas (ForP)

Probabilistic operators: P≥s , s ∈ Q[0,1]

Connectives: ¬p and →p

Basic probabilistic formulas: P≥sα
ForP - the smallest set:

which contains all of the basic probabilistic formulas, and
is closed under the following formation rules: if A,B ∈ ForP ,
then ¬pA,A→p B ∈ ForP .

All formulas: For
LPPQ

2
= ForC ∪ ForP

Abbreviations:

The remaining classical and propositional connectives
Probabilistic operators: P<s , P≤s , P>s , P=s , P6=s

Not permitted: α ∧c P≥1β, P≥1(P≥0α)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The syntax of LPPQ
2

Classical formulas (ForC) – defined as usual

φ – set of propositional letters

Probabilistic formulas (ForP)

Probabilistic operators: P≥s , s ∈ Q[0,1]

Connectives: ¬p and →p

Basic probabilistic formulas: P≥sα
ForP - the smallest set:

which contains all of the basic probabilistic formulas, and
is closed under the following formation rules: if A,B ∈ ForP ,
then ¬pA,A→p B ∈ ForP .

All formulas: For
LPPQ

2
= ForC ∪ ForP

Abbreviations:

The remaining classical and propositional connectives
Probabilistic operators: P<s , P≤s , P>s , P=s , P6=s

Not permitted: α ∧c P≥1β, P≥1(P≥0α)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The syntax of LPPQ
2

Classical formulas (ForC) – defined as usual

φ – set of propositional letters

Probabilistic formulas (ForP)

Probabilistic operators: P≥s , s ∈ Q[0,1]

Connectives: ¬p and →p

Basic probabilistic formulas: P≥sα
ForP - the smallest set:

which contains all of the basic probabilistic formulas, and
is closed under the following formation rules: if A,B ∈ ForP ,
then ¬pA,A→p B ∈ ForP .

All formulas: For
LPPQ

2
= ForC ∪ ForP

Abbreviations:

The remaining classical and propositional connectives
Probabilistic operators: P<s , P≤s , P>s , P=s , P6=s

Not permitted: α ∧c P≥1β, P≥1(P≥0α)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The syntax of LPPQ
2

Classical formulas (ForC) – defined as usual

φ – set of propositional letters

Probabilistic formulas (ForP)

Probabilistic operators: P≥s , s ∈ Q[0,1]

Connectives: ¬p and →p

Basic probabilistic formulas: P≥sα
ForP - the smallest set:

which contains all of the basic probabilistic formulas, and
is closed under the following formation rules: if A,B ∈ ForP ,
then ¬pA,A→p B ∈ ForP .

All formulas: For
LPPQ

2
= ForC ∪ ForP

Abbreviations:

The remaining classical and propositional connectives
Probabilistic operators: P<s , P≤s , P>s , P=s , P6=s

Not permitted: α ∧c P≥1β, P≥1(P≥0α)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The syntax of LPPQ
2

Classical formulas (ForC) – defined as usual

φ – set of propositional letters

Probabilistic formulas (ForP)

Probabilistic operators: P≥s , s ∈ Q[0,1]

Connectives: ¬p and →p

Basic probabilistic formulas: P≥sα
ForP - the smallest set:

which contains all of the basic probabilistic formulas, and
is closed under the following formation rules: if A,B ∈ ForP ,
then ¬pA,A→p B ∈ ForP .

All formulas: For
LPPQ

2
= ForC ∪ ForP

Abbreviations:

The remaining classical and propositional connectives
Probabilistic operators: P<s , P≤s , P>s , P=s , P6=s

Not permitted: α ∧c P≥1β, P≥1(P≥0α)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The semantics of LPPQ
2

Based on the possible–world approach

An LPPQ
2 -model – a structure M = 〈W ,H, µ, v〉:

W is a non-empty set of objects we will call worlds
H is an algebra of subsets on W
µ – finitely additive measure µ : H → Q[0,1], and
v is a valuation function v : W × φ→ {true, false}

[α]M = {w |v(w , α) = true}, α ∈ ForC

M is measurable if [α]M ∈ H, for all α ∈ ForC

We will onward focus on the class of all measurable models,
which we will denote by LPPQ

2,Meas .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The semantics of LPPQ
2

Based on the possible–world approach

An LPPQ
2 -model – a structure M = 〈W ,H, µ, v〉:

W is a non-empty set of objects we will call worlds
H is an algebra of subsets on W
µ – finitely additive measure µ : H → Q[0,1], and
v is a valuation function v : W × φ→ {true, false}

[α]M = {w |v(w , α) = true}, α ∈ ForC

M is measurable if [α]M ∈ H, for all α ∈ ForC

We will onward focus on the class of all measurable models,
which we will denote by LPPQ

2,Meas .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The semantics of LPPQ
2

Based on the possible–world approach

An LPPQ
2 -model – a structure M = 〈W ,H, µ, v〉:

W is a non-empty set of objects we will call worlds
H is an algebra of subsets on W
µ – finitely additive measure µ : H → Q[0,1], and
v is a valuation function v : W × φ→ {true, false}

[α]M = {w |v(w , α) = true}, α ∈ ForC

M is measurable if [α]M ∈ H, for all α ∈ ForC

We will onward focus on the class of all measurable models,
which we will denote by LPPQ

2,Meas .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

The semantics of LPPQ
2

Based on the possible–world approach

An LPPQ
2 -model – a structure M = 〈W ,H, µ, v〉:

W is a non-empty set of objects we will call worlds
H is an algebra of subsets on W
µ – finitely additive measure µ : H → Q[0,1], and
v is a valuation function v : W × φ→ {true, false}

[α]M = {w |v(w , α) = true}, α ∈ ForC

M is measurable if [α]M ∈ H, for all α ∈ ForC

We will onward focus on the class of all measurable models,
which we will denote by LPPQ

2,Meas .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Satistfiability and validity in LPPQ
2

The satisfiability relation |=⊆ LPPQ
2,Meas × For

LPPQ
2

satisfies

the following conditions, for every measurable model
M = 〈W ,H, µ, v〉 and every formula F :

if F ∈ ForC , M |= F iff v(w ,F) = true, for all w ∈W ,
if F ≡ P≥rα, M |= F iff µ([α]M) ≥ r .
if F ≡ ¬pA, M |= F iff M 2 A.
if F ≡ A→p B, M |= F iff M 2 A or M |= B.

A formula F is:

Satisfiable, if there exists an LPPn
2 -measurable model M such

that M |= F
Valid, if M |= F , for all LPPn

2 -measurable models M

A set of formulas T is satisfiable if there exists an
LPPn

2 -measurable model M such that M |= F , for all F ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Satistfiability and validity in LPPQ
2

The satisfiability relation |=⊆ LPPQ
2,Meas × For

LPPQ
2

satisfies

the following conditions, for every measurable model
M = 〈W ,H, µ, v〉 and every formula F :

if F ∈ ForC , M |= F iff v(w ,F) = true, for all w ∈W ,
if F ≡ P≥rα, M |= F iff µ([α]M) ≥ r .
if F ≡ ¬pA, M |= F iff M 2 A.
if F ≡ A→p B, M |= F iff M 2 A or M |= B.

A formula F is:

Satisfiable, if there exists an LPPn
2 -measurable model M such

that M |= F
Valid, if M |= F , for all LPPn

2 -measurable models M

A set of formulas T is satisfiable if there exists an
LPPn

2 -measurable model M such that M |= F , for all F ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Satistfiability and validity in LPPQ
2

The satisfiability relation |=⊆ LPPQ
2,Meas × For

LPPQ
2

satisfies

the following conditions, for every measurable model
M = 〈W ,H, µ, v〉 and every formula F :

if F ∈ ForC , M |= F iff v(w ,F) = true, for all w ∈W ,
if F ≡ P≥rα, M |= F iff µ([α]M) ≥ r .
if F ≡ ¬pA, M |= F iff M 2 A.
if F ≡ A→p B, M |= F iff M 2 A or M |= B.

A formula F is:

Satisfiable, if there exists an LPPn
2 -measurable model M such

that M |= F

Valid, if M |= F , for all LPPn
2 -measurable models M

A set of formulas T is satisfiable if there exists an
LPPn

2 -measurable model M such that M |= F , for all F ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Satistfiability and validity in LPPQ
2

The satisfiability relation |=⊆ LPPQ
2,Meas × For

LPPQ
2

satisfies

the following conditions, for every measurable model
M = 〈W ,H, µ, v〉 and every formula F :

if F ∈ ForC , M |= F iff v(w ,F) = true, for all w ∈W ,
if F ≡ P≥rα, M |= F iff µ([α]M) ≥ r .
if F ≡ ¬pA, M |= F iff M 2 A.
if F ≡ A→p B, M |= F iff M 2 A or M |= B.

A formula F is:

Satisfiable, if there exists an LPPn
2 -measurable model M such

that M |= F
Valid, if M |= F , for all LPPn

2 -measurable models M

A set of formulas T is satisfiable if there exists an
LPPn

2 -measurable model M such that M |= F , for all F ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Satistfiability and validity in LPPQ
2

The satisfiability relation |=⊆ LPPQ
2,Meas × For

LPPQ
2

satisfies

the following conditions, for every measurable model
M = 〈W ,H, µ, v〉 and every formula F :

if F ∈ ForC , M |= F iff v(w ,F) = true, for all w ∈W ,
if F ≡ P≥rα, M |= F iff µ([α]M) ≥ r .
if F ≡ ¬pA, M |= F iff M 2 A.
if F ≡ A→p B, M |= F iff M 2 A or M |= B.

A formula F is:

Satisfiable, if there exists an LPPn
2 -measurable model M such

that M |= F
Valid, if M |= F , for all LPPn

2 -measurable models M

A set of formulas T is satisfiable if there exists an
LPPn

2 -measurable model M such that M |= F , for all F ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Axioms:

AC1. α→c (β →c α)
AC2. (α→c (β →c γ))→c ((α→c β)→c (α→c γ))
AC3. (¬cβ →c ¬cα)→ ((¬cβ →c α)→ β)

AP1. A→p (B →p A)
AP2. (A→p (B →p C))→p ((A→p B)→p (A→c C))
AP3. (¬pB →p ¬pA)→ ((¬pB →p A)→ B)

AP4. P≥0α
AP5. P≤rα→p P<sα, for s > r
AP6. P<rα→p P≤rα
AP7. P≥rα→p (P≥sβ →p (P≥1¬c(α ∧c β)→p P≥r+s(α ∨c β))), r + s ≤ 1
AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1
AP9. P≥1(α→c β)→p (P≥rα→p P≥rβ)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Axioms:

AC1. α→c (β →c α)
AC2. (α→c (β →c γ))→c ((α→c β)→c (α→c γ))
AC3. (¬cβ →c ¬cα)→ ((¬cβ →c α)→ β)

AP1. A→p (B →p A)
AP2. (A→p (B →p C))→p ((A→p B)→p (A→c C))
AP3. (¬pB →p ¬pA)→ ((¬pB →p A)→ B)

AP4. P≥0α
AP5. P≤rα→p P<sα, for s > r
AP6. P<rα→p P≤rα
AP7. P≥rα→p (P≥sβ →p (P≥1¬c(α ∧c β)→p P≥r+s(α ∨c β))), r + s ≤ 1
AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1
AP9. P≥1(α→c β)→p (P≥rα→p P≥rβ)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Axioms:

AC1. α→c (β →c α)
AC2. (α→c (β →c γ))→c ((α→c β)→c (α→c γ))
AC3. (¬cβ →c ¬cα)→ ((¬cβ →c α)→ β)

AP1. A→p (B →p A)
AP2. (A→p (B →p C))→p ((A→p B)→p (A→c C))
AP3. (¬pB →p ¬pA)→ ((¬pB →p A)→ B)

AP4. P≥0α
AP5. P≤rα→p P<sα, for s > r
AP6. P<rα→p P≤rα
AP7. P≥rα→p (P≥sβ →p (P≥1¬c(α ∧c β)→p P≥r+s(α ∨c β))), r + s ≤ 1
AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1
AP9. P≥1(α→c β)→p (P≥rα→p P≥rβ)

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Inference rules:

Modus ponens for classical formulas:
from α and α→c β, infer β

Modus ponens for probabilistic formulas:
from A and A→p B, infer B

Probabilistic necessitation:
from α, infer P≥1α

The Serbian-Russian rule:
from {A→p P6=sα}s∈Q[0,1]

, infer A→p ⊥p

Note that the last inference rule is infinitary – it has countably
many premises. As a consequence, we will have infinite proofs.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Inference rules:

Modus ponens for classical formulas:
from α and α→c β, infer β

Modus ponens for probabilistic formulas:
from A and A→p B, infer B

Probabilistic necessitation:
from α, infer P≥1α

The Serbian-Russian rule:
from {A→p P6=sα}s∈Q[0,1]

, infer A→p ⊥p

Note that the last inference rule is infinitary – it has countably
many premises. As a consequence, we will have infinite proofs.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Inference rules:

Modus ponens for classical formulas:
from α and α→c β, infer β

Modus ponens for probabilistic formulas:
from A and A→p B, infer B

Probabilistic necessitation:
from α, infer P≥1α

The Serbian-Russian rule:
from {A→p P6=sα}s∈Q[0,1]

, infer A→p ⊥p

Note that the last inference rule is infinitary – it has countably
many premises. As a consequence, we will have infinite proofs.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Inference rules:

Modus ponens for classical formulas:
from α and α→c β, infer β

Modus ponens for probabilistic formulas:
from A and A→p B, infer B

Probabilistic necessitation:
from α, infer P≥1α

The Serbian-Russian rule:
from {A→p P6=sα}s∈Q[0,1]

, infer A→p ⊥p

Note that the last inference rule is infinitary – it has countably
many premises. As a consequence, we will have infinite proofs.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Syntactic notions in LPPQ
2

A formula Φ is derivable from a set of formulas (premises) T
(denoted by T ` Φ) if there exists a finite sequence of formulas
Φ0, . . . ,Φk ,Φ, such that each Φi is either in the set T , is an
instance of one of the axiom schemata, or is obtained from the
preceding formulas by using one of the inference rules. We call such
a sequence a proof of Φ from T . A formula Φ is a theorem
(denoted by ` Φ) if it is derivable from the empty set of formulas.

A set of formulas T is consistent if there exists at least one classical
formula α and at least one probabilistic formula A which are not
derivable from it, and otherwise is inconsistent. Alternatively, a set
of formulas T is inconsistent if T ` ⊥c or T ` ⊥p.

A set of formulas T is maximally consistent if it is consistent and
the following holds:

for each α ∈ ForC : if T ` α, then α ∈ T and P≥1α ∈ T ,
for each A ∈ ForP : either A ∈ T or ¬pA ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Syntactic notions in LPPQ
2

A formula Φ is derivable from a set of formulas (premises) T
(denoted by T ` Φ) if there exists a finite sequence of formulas
Φ0, . . . ,Φk ,Φ, such that each Φi is either in the set T , is an
instance of one of the axiom schemata, or is obtained from the
preceding formulas by using one of the inference rules. We call such
a sequence a proof of Φ from T . A formula Φ is a theorem
(denoted by ` Φ) if it is derivable from the empty set of formulas.

A set of formulas T is consistent if there exists at least one classical
formula α and at least one probabilistic formula A which are not
derivable from it, and otherwise is inconsistent. Alternatively, a set
of formulas T is inconsistent if T ` ⊥c or T ` ⊥p.

A set of formulas T is maximally consistent if it is consistent and
the following holds:

for each α ∈ ForC : if T ` α, then α ∈ T and P≥1α ∈ T ,
for each A ∈ ForP : either A ∈ T or ¬pA ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Syntactic notions in LPPQ
2

A formula Φ is derivable from a set of formulas (premises) T
(denoted by T ` Φ) if there exists a finite sequence of formulas
Φ0, . . . ,Φk ,Φ, such that each Φi is either in the set T , is an
instance of one of the axiom schemata, or is obtained from the
preceding formulas by using one of the inference rules. We call such
a sequence a proof of Φ from T . A formula Φ is a theorem
(denoted by ` Φ) if it is derivable from the empty set of formulas.

A set of formulas T is consistent if there exists at least one classical
formula α and at least one probabilistic formula A which are not
derivable from it, and otherwise is inconsistent. Alternatively, a set
of formulas T is inconsistent if T ` ⊥c or T ` ⊥p.

A set of formulas T is maximally consistent if it is consistent and
the following holds:

for each α ∈ ForC : if T ` α, then α ∈ T and P≥1α ∈ T ,
for each A ∈ ForP : either A ∈ T or ¬pA ∈ T .

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Meta-theoretic properties of LPPQ
2

The Deduction Theorem: T ` A→c(p) B iff T ,A ` B

Soundness: If a formula Φ is a theorem of Ax
LPPQ

2
, then it is

LPPQ
2,Meas–valid.

Strong Completeness: A set of formulas T is Ax
LPPQ

2
–consistent if and

only if it is LPPQ
2,Meas–satisfiable.

Simple Completeness: If a formula Φ is LPPQ
2,Meas–valid, then it is a

theorem of Ax
LPPQ

2
.

Non-compactness: Let T be a set of formulas. It does not hold that if
every finite subset of T is LPPQ

2,Meas–satisfiable, then T is

LPPQ
2,Meas–satisfiable.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Meta-theoretic properties of LPPQ
2

The Deduction Theorem: T ` A→c(p) B iff T ,A ` B

Soundness: If a formula Φ is a theorem of Ax
LPPQ

2
, then it is

LPPQ
2,Meas–valid.

Strong Completeness: A set of formulas T is Ax
LPPQ

2
–consistent if and

only if it is LPPQ
2,Meas–satisfiable.

Simple Completeness: If a formula Φ is LPPQ
2,Meas–valid, then it is a

theorem of Ax
LPPQ

2
.

Non-compactness: Let T be a set of formulas. It does not hold that if
every finite subset of T is LPPQ

2,Meas–satisfiable, then T is

LPPQ
2,Meas–satisfiable.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Meta-theoretic properties of LPPQ
2

The Deduction Theorem: T ` A→c(p) B iff T ,A ` B

Soundness: If a formula Φ is a theorem of Ax
LPPQ

2
, then it is

LPPQ
2,Meas–valid.

Strong Completeness: A set of formulas T is Ax
LPPQ

2
–consistent if and

only if it is LPPQ
2,Meas–satisfiable.

Simple Completeness: If a formula Φ is LPPQ
2,Meas–valid, then it is a

theorem of Ax
LPPQ

2
.

Non-compactness: Let T be a set of formulas. It does not hold that if
every finite subset of T is LPPQ

2,Meas–satisfiable, then T is

LPPQ
2,Meas–satisfiable.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Meta-theoretic properties of LPPQ
2

The Deduction Theorem: T ` A→c(p) B iff T ,A ` B

Soundness: If a formula Φ is a theorem of Ax
LPPQ

2
, then it is

LPPQ
2,Meas–valid.

Strong Completeness: A set of formulas T is Ax
LPPQ

2
–consistent if and

only if it is LPPQ
2,Meas–satisfiable.

Simple Completeness: If a formula Φ is LPPQ
2,Meas–valid, then it is a

theorem of Ax
LPPQ

2
.

Non-compactness: Let T be a set of formulas. It does not hold that if
every finite subset of T is LPPQ

2,Meas–satisfiable, then T is

LPPQ
2,Meas–satisfiable.

Probability logics in Coq

Probability Logics

The Logic LPPQ
2

Meta-theoretic properties of LPPQ
2

The Deduction Theorem: T ` A→c(p) B iff T ,A ` B

Soundness: If a formula Φ is a theorem of Ax
LPPQ

2
, then it is

LPPQ
2,Meas–valid.

Strong Completeness: A set of formulas T is Ax
LPPQ

2
–consistent if and

only if it is LPPQ
2,Meas–satisfiable.

Simple Completeness: If a formula Φ is LPPQ
2,Meas–valid, then it is a

theorem of Ax
LPPQ

2
.

Non-compactness: Let T be a set of formulas. It does not hold that if
every finite subset of T is LPPQ

2,Meas–satisfiable, then T is

LPPQ
2,Meas–satisfiable.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

The syntax of LPPQ
2

Probabilistic formulas:

Inductive forP : Type :=

| Pge : Q01 → forC → forP

| NegP : forP → forP

| ImpP : forP → forP → forP.

All formulas:

Inductive FOR : Type :=

| Clas : forC → FOR

| Prob : forP → FOR.

Abbreviations:

Definition OrP (A : forP) (B : forP) : forP := ImpP (NegP A) B.

Definition Plt (s : Q01) (A : forC) : forP := NegP (Pge s A).

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

The syntax of LPPQ
2

Probabilistic formulas:

Inductive forP : Type :=

| Pge : Q01 → forC → forP

| NegP : forP → forP

| ImpP : forP → forP → forP.

All formulas:

Inductive FOR : Type :=

| Clas : forC → FOR

| Prob : forP → FOR.

Abbreviations:

Definition OrP (A : forP) (B : forP) : forP := ImpP (NegP A) B.

Definition Plt (s : Q01) (A : forC) : forP := NegP (Pge s A).

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

The syntax of LPPQ
2

Probabilistic formulas:

Inductive forP : Type :=

| Pge : Q01 → forC → forP

| NegP : forP → forP

| ImpP : forP → forP → forP.

All formulas:

Inductive FOR : Type :=

| Clas : forC → FOR

| Prob : forP → FOR.

Abbreviations:

Definition OrP (A : forP) (B : forP) : forP := ImpP (NegP A) B.

Definition Plt (s : Q01) (A : forC) : forP := NegP (Pge s A).

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

The semantics of LPPQ
2

A Model Candidate:

Record Model Cand : Type := mkMCand {
MC Worlds : Ensemble ElemWS;

MC Algebra : Ensemble (Ensemble ElemWS);

MC Measure : Measure;

MC Valuation : ElemWS -> nat -> Prop;

MC ElemWS Cd : inhabited ElemWS;

MC Worlds Cd : MC Worlds = Full set ElemWS}.

Satisfiability:

Definition Satisfiable (T : Ensemble FOR) : Prop :=

∃ Model : Model Meas, modelsSet Model T.

Validity:

Definition Valid (F : FOR) : Prop :=

∀ Model : Model Meas, models Model F.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

The semantics of LPPQ
2

A Model Candidate:

Record Model Cand : Type := mkMCand {
MC Worlds : Ensemble ElemWS;

MC Algebra : Ensemble (Ensemble ElemWS);

MC Measure : Measure;

MC Valuation : ElemWS -> nat -> Prop;

MC ElemWS Cd : inhabited ElemWS;

MC Worlds Cd : MC Worlds = Full set ElemWS}.

Satisfiability:

Definition Satisfiable (T : Ensemble FOR) : Prop :=

∃ Model : Model Meas, modelsSet Model T.

Validity:

Definition Valid (F : FOR) : Prop :=

∀ Model : Model Meas, models Model F.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

The semantics of LPPQ
2

A Model Candidate:

Record Model Cand : Type := mkMCand {
MC Worlds : Ensemble ElemWS;

MC Algebra : Ensemble (Ensemble ElemWS);

MC Measure : Measure;

MC Valuation : ElemWS -> nat -> Prop;

MC ElemWS Cd : inhabited ElemWS;

MC Worlds Cd : MC Worlds = Full set ElemWS}.

Satisfiability:

Definition Satisfiable (T : Ensemble FOR) : Prop :=

∃ Model : Model Meas, modelsSet Model T.

Validity:

Definition Valid (F : FOR) : Prop :=

∀ Model : Model Meas, models Model F.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Encodings of axioms:

AP1. α→p (β →p α)

Definition AxAP01 (A B : forP) : FOR := Prob (ImpP A (ImpP B A)).

AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1

Definition AxAP08 (A B : forC) (r s : Q01) (H : r + s ≤ 1) : FOR :=

Prob (ImpP (Ple r A) (ImpP (Plt s B) (Plt (r + s) (OrC A B)))).

Encodings of inference rules:

dbyIRMPc : ∀ (T : Ensemble FOR) (A B : forC),

derives T (Clas A) → derives T (Clas (ImpC A B)) →
→ derives T (Clas B)

dbyIRPN : ∀ (T : Ensemble FOR) (A : forC),

derives T (Clas A) → derives T (Prob (Pge 1 A))

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Encodings of axioms:

AP1. α→p (β →p α)

Definition AxAP01 (A B : forP) : FOR := Prob (ImpP A (ImpP B A)).

AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1

Definition AxAP08 (A B : forC) (r s : Q01) (H : r + s ≤ 1) : FOR :=

Prob (ImpP (Ple r A) (ImpP (Plt s B) (Plt (r + s) (OrC A B)))).

Encodings of inference rules:

dbyIRMPc : ∀ (T : Ensemble FOR) (A B : forC),

derives T (Clas A) → derives T (Clas (ImpC A B)) →
→ derives T (Clas B)

dbyIRPN : ∀ (T : Ensemble FOR) (A : forC),

derives T (Clas A) → derives T (Prob (Pge 1 A))

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Encodings of axioms:

AP1. α→p (β →p α)

Definition AxAP01 (A B : forP) : FOR := Prob (ImpP A (ImpP B A)).

AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1

Definition AxAP08 (A B : forC) (r s : Q01) (H : r + s ≤ 1) : FOR :=

Prob (ImpP (Ple r A) (ImpP (Plt s B) (Plt (r + s) (OrC A B)))).

Encodings of inference rules:

dbyIRMPc : ∀ (T : Ensemble FOR) (A B : forC),

derives T (Clas A) → derives T (Clas (ImpC A B)) →
→ derives T (Clas B)

dbyIRPN : ∀ (T : Ensemble FOR) (A : forC),

derives T (Clas A) → derives T (Prob (Pge 1 A))

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

A complete axiomatization of LPPQ
2 – AxLPPQ

2

Encodings of axioms:

AP1. α→p (β →p α)

Definition AxAP01 (A B : forP) : FOR := Prob (ImpP A (ImpP B A)).

AP8. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), r + s ≤ 1

Definition AxAP08 (A B : forC) (r s : Q01) (H : r + s ≤ 1) : FOR :=

Prob (ImpP (Ple r A) (ImpP (Plt s B) (Plt (r + s) (OrC A B)))).

Encodings of inference rules:

dbyIRMPc : ∀ (T : Ensemble FOR) (A B : forC),

derives T (Clas A) → derives T (Clas (ImpC A B)) →
→ derives T (Clas B)

dbyIRPN : ∀ (T : Ensemble FOR) (A : forC),

derives T (Clas A) → derives T (Prob (Pge 1 A))

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Syntactic notions in LPPQ
2

Consistency:

Definition Consistent (T : Ensemble FOR) : Prop :=

(∃ f : forC, ¬ Derivable n T (Clas f)) ∧
(∃ f : forP, ¬ Derivable n T (Prob f)).

Alternate Inconsistency:

Definition Inconsistent Alternate (T : Ensemble FOR) : Prop :=

(∀ f : forC, Derivable n T (Clas f)) ∨
(∀ f : forP, Derivable n T (Prob f)).

Maximal Consistency:

Definition Max Consistent (T : Ensemble FOR) : Prop :=

Consistent T ∧
(∀ A : forC, Derivable n T (Clas A) → In FOR T (Clas A) ∧ In FOR

T (Prob (Pge 1 A))) ∧
(∀ A : forP, In FOR T (Prob A) Y In FOR T (Prob (NegP A))).

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Syntactic notions in LPPQ
2

Consistency:

Definition Consistent (T : Ensemble FOR) : Prop :=

(∃ f : forC, ¬ Derivable n T (Clas f)) ∧
(∃ f : forP, ¬ Derivable n T (Prob f)).

Alternate Inconsistency:

Definition Inconsistent Alternate (T : Ensemble FOR) : Prop :=

(∀ f : forC, Derivable n T (Clas f)) ∨
(∀ f : forP, Derivable n T (Prob f)).

Maximal Consistency:

Definition Max Consistent (T : Ensemble FOR) : Prop :=

Consistent T ∧
(∀ A : forC, Derivable n T (Clas A) → In FOR T (Clas A) ∧ In FOR

T (Prob (Pge 1 A))) ∧
(∀ A : forP, In FOR T (Prob A) Y In FOR T (Prob (NegP A))).

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Syntactic notions in LPPQ
2

Consistency:

Definition Consistent (T : Ensemble FOR) : Prop :=

(∃ f : forC, ¬ Derivable n T (Clas f)) ∧
(∃ f : forP, ¬ Derivable n T (Prob f)).

Alternate Inconsistency:

Definition Inconsistent Alternate (T : Ensemble FOR) : Prop :=

(∀ f : forC, Derivable n T (Clas f)) ∨
(∀ f : forP, Derivable n T (Prob f)).

Maximal Consistency:

Definition Max Consistent (T : Ensemble FOR) : Prop :=

Consistent T ∧
(∀ A : forC, Derivable n T (Clas A) → In FOR T (Clas A) ∧ In FOR

T (Prob (Pge 1 A))) ∧
(∀ A : forP, In FOR T (Prob A) Y In FOR T (Prob (NegP A))).

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Main meta-theoretic results

The Deduction Theorem:

Theorem LPP2 Q Deduction Theorem Classical :

∀ (T : Ensemble FOR) (A B : forC),

Derivable n (Union FOR T (Singleton FOR (Clas A))) (Clas B)

↔ Derivable n T (Clas (ImpC A B)).

Theorem LPP2 Q Deduction Theorem Probabilistic :

∀ (T : Ensemble FOR) (A B : forP),

Derivable n (Union FOR T (Singleton FOR (Prob A))) (Prob B)

↔ Derivable n T (Prob (ImpP A B)).

Soundness:

Theorem LPP2 Q Soundness : ∀ (F : FOR), isTheorem F → Valid F.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Main meta-theoretic results

The Deduction Theorem:

Theorem LPP2 Q Deduction Theorem Classical :

∀ (T : Ensemble FOR) (A B : forC),

Derivable n (Union FOR T (Singleton FOR (Clas A))) (Clas B)

↔ Derivable n T (Clas (ImpC A B)).

Theorem LPP2 Q Deduction Theorem Probabilistic :

∀ (T : Ensemble FOR) (A B : forP),

Derivable n (Union FOR T (Singleton FOR (Prob A))) (Prob B)

↔ Derivable n T (Prob (ImpP A B)).

Soundness:

Theorem LPP2 Q Soundness : ∀ (F : FOR), isTheorem F → Valid F.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Main meta-theoretic results

Strong Completeness:

Theorem LPP2 Q Strong Completeness :

∀ T : Ensemble FOR, Consistent T ↔ Satisfiable T.

Simple Completeness:

Theorem LPP2 Q Simple Completeness :

∀ F : FOR, Valid F → isTheorem F.

Non-compactness:

Theorem LPP2 Q NonCompactness : ∃ T : Ensemble FOR,

(∀ T’ : Ensemble FOR, Finite FOR T’ → Included FOR T’ T →
→ Satisfiable T’) ∧ ¬ Satisfiable T.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Main meta-theoretic results

Strong Completeness:

Theorem LPP2 Q Strong Completeness :

∀ T : Ensemble FOR, Consistent T ↔ Satisfiable T.

Simple Completeness:

Theorem LPP2 Q Simple Completeness :

∀ F : FOR, Valid F → isTheorem F.

Non-compactness:

Theorem LPP2 Q NonCompactness : ∃ T : Ensemble FOR,

(∀ T’ : Ensemble FOR, Finite FOR T’ → Included FOR T’ T →
→ Satisfiable T’) ∧ ¬ Satisfiable T.

Probability logics in Coq

Formalizations in Coq

Formalization of LPPQ
2

Main meta-theoretic results

Strong Completeness:

Theorem LPP2 Q Strong Completeness :

∀ T : Ensemble FOR, Consistent T ↔ Satisfiable T.

Simple Completeness:

Theorem LPP2 Q Simple Completeness :

∀ F : FOR, Valid F → isTheorem F.

Non-compactness:

Theorem LPP2 Q NonCompactness : ∃ T : Ensemble FOR,

(∀ T’ : Ensemble FOR, Finite FOR T’ → Included FOR T’ T →
→ Satisfiable T’) ∧ ¬ Satisfiable T.

Probability logics in Coq

Formalizations in Coq

Formalizations of other probability logics

Other formalized probability logics

LPPQ
1 , a probability logic similar to LPPQ

2 , but with iterations
of probabilistic operators allowed.

LPP
Fr(n)
2 , a probability logic similar to LPPQ

2 , with the main
difference being that the measure µ can take only values from
the (finite) set Fr(n) = {0, 1

n , . . . ,
n−1
n , 1}. This logic has no

infinitary rules, and has the compactness property.

LPP
Fr(n)
1 , a probability logic similar to LPP

Fr(n)
2 , but with

iterations of probabilistic operators allowed.

Probability logics in Coq

Formalizations in Coq

Formalizations of other probability logics

Other formalized probability logics

LPPQ
1 , a probability logic similar to LPPQ

2 , but with iterations
of probabilistic operators allowed.

LPP
Fr(n)
2 , a probability logic similar to LPPQ

2 , with the main
difference being that the measure µ can take only values from
the (finite) set Fr(n) = {0, 1

n , . . . ,
n−1
n , 1}. This logic has no

infinitary rules, and has the compactness property.

LPP
Fr(n)
1 , a probability logic similar to LPP

Fr(n)
2 , but with

iterations of probabilistic operators allowed.

Probability logics in Coq

Formalizations in Coq

Formalizations of other probability logics

Other formalized probability logics

LPPQ
1 , a probability logic similar to LPPQ

2 , but with iterations
of probabilistic operators allowed.

LPP
Fr(n)
2 , a probability logic similar to LPPQ

2 , with the main
difference being that the measure µ can take only values from
the (finite) set Fr(n) = {0, 1

n , . . . ,
n−1
n , 1}. This logic has no

infinitary rules, and has the compactness property.

LPP
Fr(n)
1 , a probability logic similar to LPP

Fr(n)
2 , but with

iterations of probabilistic operators allowed.

Probability logics in Coq

Directions for Future work

Future work

Formalizing the proof of the decidability for some/all of the
already formalized probability logics

Formalizing other probability logics

With the qualitative probability operator
With a real–valued measure
With an intuitionistic base
With infinitesimals

Formalizing and extracting a certified probabilistic
SAT–checker.

Probability logics in Coq

Directions for Future work

Future work

Formalizing the proof of the decidability for some/all of the
already formalized probability logics

Formalizing other probability logics

With the qualitative probability operator
With a real–valued measure
With an intuitionistic base
With infinitesimals

Formalizing and extracting a certified probabilistic
SAT–checker.

Probability logics in Coq

Directions for Future work

Future work

Formalizing the proof of the decidability for some/all of the
already formalized probability logics

Formalizing other probability logics

With the qualitative probability operator
With a real–valued measure
With an intuitionistic base
With infinitesimals

Formalizing and extracting a certified probabilistic
SAT–checker.

Probability logics in Coq

Directions for Future work

The Usual Way of Ending a Presentation

Thank you for your attention.

Any questions?

	Probability Logics
	The Idea
	The Logic LPP2Q

	Formalizations in Coq
	Formalization of LPP2Q
	Formalizations of other probability logics

	Directions for Future work

