
Formalized Search for FC-Families

Formalized Search for FC-Families

Filip Marić, Bojan Vučković, Miodrag Živković

∗Faculty of Mathematics,
University of Belgrade

FATPA Workshop,
2. 2. 2012.

Formalized Search for FC-Families

Outline

1 Proof-by-Computation

2 On Frankl’s Conjecture

3 Formalization
Proof idea
A Bit of Formality

4 Conclusions and Further Work

Formalized Search for FC-Families

Proof-by-Computation

About formal theorem proving

Formalized mathematics and interactive theorem provers
(proof assistants) have made great progress in recent years.

Many classical mathematical theorems are formally proved.

Intensive use in hardware and software verification.

Formalized Search for FC-Families

Proof-by-Computation

proof-by-computation

Most successful results in interactive theorem proving are for
the problems that require proofs with much computational
content.

Highly complex proofs (and therefore often require
justifications by formal means).

Proofs combine classical mathematical statements with
complex computing machinery (usually computer
implementation of combinatorial algorithms).

The corresponding paradigm is sometimes referred to as
proof-by-evaluation or proof-by-computation.

Formalized Search for FC-Families

Proof-by-Computation

Examples of proof-by-computation

Four-Color Theorem.

First conjectured in 1852 by Francis Guthrie.

Century of work by many famous mathematicians (including
De Morgan, Peirce, Hamilton, Cayley, Birkhoff, and Lebesgue)
and many incorrect “proofs”.

Formalized Search for FC-Families

Proof-by-Computation

Examples of proof-by-computation

Proved by Appel and Haken in 1976., using IBM 370 assembly
language computer programs to carry out a gigantic case
analysis (billion cases).

The Appel and Haken proof attracted a fair amount of
criticism.

Computer programming is known to be error-prone, and
difficult to relate precisely to the formal statement of a
mathematical theorem.

Attempts to simplify the proofs (e.g., Robertson et al.) —
number of cases reduced, programs in C instead of assembly
language.

A doubts were removed only when Georges Gonthier employed
proof assistant Coq reducing the whole proof to several basic
logical principles.

Formalized Search for FC-Families

Proof-by-Computation

Examples of proof-by-computation

Kelpler’s conjecture.

In 1998. Thomas Hales announced the first (by now)
accepted proof of Kepler’s conjecture.

It involves 3 distinct large computations.

After 4 years of refereeing by a team of 12 referees, the
referees declared that they were 99% certain of the
correctness of the proof.

Dissatisfied with this, Hales started the informal open-to-all
collaborative flyspeck project to formalize the whole proof
with a theorem prover.

Formalized Search for FC-Families

On Frankl’s Conjecture

Frankl’s conjecture

Frankl’s conjecture (Péter Frankl, 1979.)

For every non-trivial, finite, union-closed family of sets there is an
element contained in at least half of the sets.

or dually

Frankl’s conjecture

For every non-trivial, finite, intersection-closed family of sets there
is an element contained in at most half of the sets.

Formalized Search for FC-Families

On Frankl’s Conjecture

Frankl’s conjecture — example

Example

F = {{0}, {1}, {0, 1}, {1, 2}, {0, 1, 2}}

F is union-closed.

|F | = 5, #F0 = 3, #F1 = 4, #F2 = 2

Formalized Search for FC-Families

On Frankl’s Conjecture

Frankl’s conjecture — status

Conjecture is still open.

It is known to hold for:

1 families of at most 36 sets (Lo Faro, 1994.),
2 families of at most 40 sets? (Roberts, 1992., unpublished),
3 families of sets such that their union has at most 11 elements

(Bošnjak, Marković, 2008),
4 families of sets such that their union has at most 12 elements

(Vučković, Živković, 2011., computer assisted approach,
unpublished).

Formalized Search for FC-Families

On Frankl’s Conjecture

Vučković’s and Živković’s proof

Proof-by-computation.

Sophisticated techniques (naive approach is doomed to fail —
requires listing 22

12
= 24096 families).

JAVA programs that perform combinatorial search.

Programs are highly complex and optimized for efficiency.

Abstract mathematics and concrete implementation tricks are
not separated.

How can this kind of proof be trusted?

Newer versions of the programs generate proof traces that
could be inspected by independent checkers.

Ideal candidate for formalization!

Formalized Search for FC-Families

On Frankl’s Conjecture

FC-families

An important technique in proving Frankl’s condition are so
called FC-families.

Definition

A family F is an FC-family if for all finite union closed families F ′

containing F one of the elements in
⋃

F is contained in at least
half of the sets of F ′ (so F ′ satisfies Frankl’s condition).

In the sequel we will only consider proving that a family is an
FC-family, and not the full Frankl’s conjecture.

Formalized Search for FC-Families

On Frankl’s Conjecture

Examples of FC-families

One-element family {a} is an FC-family.

Two-element family {a0, a1} is an FC-family.

Each family with three three-element sets whose union is
contained in a five element set is an FC-family (e.g.,
{{a0, a1, a2}, {a0, a1, a3}, {a2, a3, a4}}).

. . .

Formalized Search for FC-Families

Formalization

Technique — idea

Is a the Frankl’s element?

{{a, b, c}, {a, c , d}, {b, c , d}}
1 1 0 = 2 ≥ 3/2

1/2 1/2 −1/2 = 1/2 ≥ 0

Is a or b the Frankl’s element?

{{a, b, c}, {a, c , d}, {b, c , d}}
2 1 1 = 4 ≥ 2 · 3/2
1 0 0 = 1 ≥ 0

Formalized Search for FC-Families

Formalization

Frankl’s condition — formal definition

frankl F ≡ ∃a. a ∈
⋃

F ∧ 2 ·#Fa ≥ |F |

Note that division is avoided in order to stay within integers
— this is done throughout the formalization.

Formalized Search for FC-Families

Formalization

Weight functions

Weight functions — definition

A function w : X → N is a weight function on X , denoted by
wfX w , iff ∃x ∈ X . w(x) > 0.
Weight of a set A, denoted by w(A), is the value

∑
x∈A w(x).

Weight of a family F , denoted by w(F), is the value
∑

A∈F w(A).

Formalized Search for FC-Families

Formalization

Weight functions

Weight functions — example

Let w be a function such that w(a0) = 1,w(a1) = 2, and
w(ai) = 0 for all other elements ai , i > 1.

w is clearly a weight function.

w({a0, a1, a2}) = 3,

w({{a0, a1}, {a1, a2}, {a1}}) = 7.

Formalized Search for FC-Families

Formalization

Frankl’s characterization using weight functions

Lemma

frankl F ⇐⇒ ∃w . wf(
⋃

F) w ∧ 2 · w(F) ≥ w(
⋃

F) · |F |

Proof sketch

⇒: If F is Frankl’s, then let w assign 1 to the element a that is
contained in at least half of the sets and 0 to all other elements.
Then, w(F) = #Fa and w(

⋃
F) = 1, and since #Fa ≥ |F |/2, the

statement holds.
⇐: If F is not Frankl’s, then for all a, it holds #Fa < |F |/2. Then,
2 ·w(F) = 2 ·Σa∈

⋃
F#Fa ·w(a) < |F | ·Σa∈

⋃
Fw(a) = |F | ·w(

⋃
F).

Formalized Search for FC-Families

Formalization

Shares

A slightly more operative characterization is obtained by
introducing set share concept, as it expresses how much does each
member set contributes to a Family being Frankl’s.

Share — definition

Let w be a weight function and X a set.
Share of a set A with respect to w and X , denoted by w̄X (A), is
the value 2 · w(A)− w(X).
Share of a family F with respect to w and X , denoted by w̄X (F),
is the value

∑
A∈F w̄X (A).

Proposition

w̄X (F) = 2 · w(F)− w(X) · |F |

Formalized Search for FC-Families

Formalization

Share — example

Let w be a function such that w(a0) = 1,w(a1) = 2, and
w(ai) = 0 for all other elements ai , i > 1.

w̄{a0,a1,a2}({a1, a2}) = 2 · w({a1, a2})− w({a0, a1, a2})
= 4− 3 = 1.

w̄{a0,a1,a2}({{a0, a1}, {a1, a2}, {a1}}) =

(2 · 3− 3) + (2 · 2− 3) + (2 · 2− 3) = 5.

Formalized Search for FC-Families

Formalization

Frankl’s characterization using shares functions

Lemma

frankl F ⇐⇒ ∃w . wf(
⋃

F) w ∧ w̄(
⋃

F)(F) ≥ 0

Formalized Search for FC-Families

Formalization

Proof idea

Proof idea — FC family

Now we consider the problem of proving that certain family is an
FC-family. For example, let us analyze the proof of the following
theorem.

Theorem

Each finite union-closed family containing {a0, a1} is Frankl’s.

Consider, e.g., the union-closed family F : {{a0, a1}, {x0}, {x0, a0},
{x0, x1}, {x0, a0, a1}, {x0, x1, a0},{x0, x1, a1}, {x0, x1, a0, a1}}
How to show that it is Frankl’s?

Formalized Search for FC-Families

Formalization

Proof idea

Reorganize:

{} − {{a0, a1}}
{x0} − {{x0}, {x0, a0}, {x0, a0, a1}}
{x1} − {}
{x0, x1} − {{x0, x1}, {x0, x1, a0}, {x0, x1, a1}, {x0, x1, a0, a1}}

Formalized Search for FC-Families

Formalization

Proof idea

Proof idea — FC family

Let w be a weight function assigning 1 to a0 and a1, and 0 to x0
and x0. Share of F (i.e., w̄(

⋃
F)(F)) is the sum of shares of all

parts and is non-negative if all part shares are non-negative.

{} − {{a0, a1}} − 2
{x0} − {{x0}, {x0, a0}, {x0, a0, a1}} − 0
{x1} − {} − 0
{x0, x1} − {{x0, x1}, {x0, x1, a0}, {x0, x1, a1}, {x0, x1, a0, a1}} − 0

Formalized Search for FC-Families

Formalization

Proof idea

Proof idea — FC family

Let w be a weight function assigning 1 to a0 and a1, and 0 to x0
and x0. Share of F (i.e., w̄(

⋃
F)(F)) is the sum of shares of all

parts and is non-negative if all part shares are non-negative.

Things do not change if the elements x0 and x1 are omitted (as
their weight is 0).

{} − {{a0, a1}} − 2
{x0} − {{}, {a0}, {a0, a1}} − 0
{x1} − {} − 0
{x0, x1} − {{}, {a0}, {a1}, {a0, a1}} − 0

Formalized Search for FC-Families

Formalization

Proof idea

Proof idea — FC family

Notice that all four ,,parts” are:

built of elements of the initial family {{a0, a1}},
union closed,

closed for unions with the members of the initial family
{{a0, a1}} (although they need not contain these).

Various families F will give various ,,part” families, but these will
always satisfy listed conditions.

Formalized Search for FC-Families

Formalization

Proof idea

Proof idea — FC Family

General proof strategy

To prove that an initial family is an FC-family, choose an
appropriate weight function w , list all possible families satisfying
listed conditions and show that all of them have non-negative
shares (with respect to w).

Formalized Search for FC-Families

Formalization

A Bit of Formality

Hypercubes

An S-hypercube with a base K , denoted by hcSK , is the family
{A. K ⊆ A ∧ A ⊆ K ∪ S}. Alternatively, a hypercube can be
characterized by hcSK = {K ∪ A. A ∈ pow S}.

Proposition

1

pow (K ∪ S) =
⋃

K ′⊆K
hcSK ′

2 If K1 and K2 are different and disjoint with S , then hcSK1
and

hcSK2
are disjoint.

Formalized Search for FC-Families

Formalization

A Bit of Formality

definition

A hyper-share of a family F with respect to the weight function w ,
the hypercube hcSK and the set X , denoted by w̄S

KX (F), is the
value

∑
A∈hcSK∩F

w̄X (A).

Lemma

Let K ∪ S =
⋃

F and K ∩ S = ∅, and let w be a weight function
on

⋃
F .

1

w̄(
⋃

F)(F) =
∑
K ′⊆K

w̄S
K ′(

⋃
F)(F)

2 If ∀K ′ ⊆ K . w̄S
K ′(

⋃
F)(F) ≥ 0, then frankl F .

Formalized Search for FC-Families

Formalization

A Bit of Formality

Definition

Projection of a family F onto a hypercube hcSK , denoted by
hcSK bF c, is the set {A− K . A ∈ hcSK ∩ F}.

Proposition

1 If uc F , then uc (hcSK bF c).

2 If uc F , I ⊆ F , S =
⋃

I , K ∩ S = ∅, then ucI (hcSK bF c).

3 If ∀x ∈ K . w(x) = 0, then w̄S
KX (F) = w̄X (hcSK bF c).

Formalized Search for FC-Families

Formalization

A Bit of Formality

Definition

A set family F ′ is union closed for F , denoted by ucF F ′, iff

uc F ′ ∧ (∀A ∈ F ′. ∀B ∈ F . A ∪ B ∈ F ′).

Union closed extensions of a set family F are families of sets that
are created from elements of F and are union closed for F . Family
of all union closed extensions is

uce F ≡ {F ′. F ′ ⊆ pow
⋃

F ∧ ucF F ′}.

Formalized Search for FC-Families

Formalization

A Bit of Formality

Theorem

Let F be a union closed family (i.e., uc F), and let Fc be its
subfamily (i.e., Fc ⊆ F). Let w be a weight function on

⋃
F , and

∀x ∈
⋃

F \
⋃

Fc . w(x) = 0. If

∀F ′ ∈ uce Fc . w̄(
⋃

Fc)(F ′) ≥ 0,

then frankl F .

Formalized Search for FC-Families

Formalization

A Bit of Formality

Search function

How to check that ∀F ′ ∈ uce Fc . w̄(
⋃

Fc)(F ′) ≥ 0?

Define a procedure ssn F w , such that if ssn F w = ⊥, then
∀F ′ ∈ uce Fc . w̄(

⋃
Fc)(F ′) ≥ 0.

The heart of this procedure is a recursive function
ssnF ,w ,X L Ft that will preform the systematic traversal of all
union closed extensions of F , but with some pruning that
speeds up the search.

Formalized Search for FC-Families

Formalization

A Bit of Formality

Search function

Definition

〈F 〉 ≡ {
⋃

F ′. F ′ ∈ pow F − {∅}}

icI A F ≡ F ∪ {A} ∪ {A ∪ B.B ∈ F} ∪ {A ∪ B.B ∈ I}
ssnF ,w,X [] Ft ≡ w̄X (Ft) < 0

ssnF ,w,X (h#t) Ft ≡ if w̄X (Ft) +
∑

A∈h#t

w̄X (A) ≥ 0 then ⊥

else if ssnF ,w,X t Ft then >
else if h ∈ Ft then ⊥
else ssnF ,w,X t (icF h Ft)

Let L be a list with no repeated elements such that its set is
{A. A ∈ pow

⋃
F ∧ w̄X (A) < 0}.

ssn F w ≡ ssn〈F〉,w,(
⋃

F) L ∅

Formalized Search for FC-Families

Formalization

A Bit of Formality

Search function — correctness

Lemma

If

1 ssnF ,w ,X L Ft = ⊥,

2 for all elements A in L it holds that w̄X (A) < 0,

3 for all A ∈ F ′ − Ft , if w̄X (A) < 0, then A is in L,

4 Ft ⊆ F ′,

5 ucF F ′,

then w̄X (F ′) ≥ 0.

Lemma

If ssn F w = ⊥ and F ′ ∈ uce F then w̄(
⋃

F)(F ′) ≥ 0.

Formalized Search for FC-Families

Formalization

A Bit of Formality

The formal correctness proofs are given.

These imply that the search function is (in some sense) sound.

The search function is also (in some sense) complete.

Formalized Search for FC-Families

Formalization

A Bit of Formality

Search function — optimizations

Many optimizations to the basic ssn F w definition are
introduced. For example:

How to represent sets and families of sets so that the program
becomes efficiently executable?
Without loss of generality assume dealing only with sets of
natural numbers.
Encode sets of natural numbers by natural numbers (e.g.,
{0, 2, 3} can be encoded by 20 + 22 + 23 = 13). Computing
unions (that is very frequent operation) then reduces to bitwise
disjunction.
Avoid repeating same calculations by using memoization
techniques.

The function is refined 5 times, introducing optimization one
by one, until a final version is obtained.

Each version is shown to be equivalent with the previous one.

Formalized Search for FC-Families

Formalization

A Bit of Formality

Symmetries

Proofs of several theorems contain plenty symmetric cases.

For example:

Theorem

Each family with three three-element sets whose union is contained
in a five element set is an FC-family.

Consider families {{a0, a1, a2}, {a0, a1, a3}, {a2, a3, a4}} and
{{a0, a1, a2}, {a1, a3, a4}, {a2, a3, a4}}. These cases are
symmetric since there is a permutation
(a0, a1, a2, a3, a4) 7→ (a3, a4, a1, a2, a0) mapping one to
another.

Formalized Search for FC-Families

Formalization

A Bit of Formality

Avoiding symmetries

Definition

A family is nkm-family if it has m members, each with k elements,
and its union is an n element set.

Symmetries are avoided by a function that finds all
nonequivalent nkm-families (for a given n, k, and m).

This function is verified (if the families returned by this
function are Frankl’s then all non-returned nkm-families are
also Frankl’s).

Formalized Search for FC-Families

Conclusions and Further Work

Summary

Using the demonstrated technique, it has been shown that the
following families are FC-families:

1 {{a}}
2 {{a, b}}
3 All 533-families.
4 All 634-families.
5 All 734-families.

Total proof checking time is around 15 minutes, most of which
is devoted in computation (evaluating ssn w F function).

Formalized Search for FC-Families

Conclusions and Further Work

Current work

In this talk, I only covered results on proving FC-families.

Currently, the case 12 of Frankl’s conjecture is formalized
(FC-families are important step since they allow pruning a
huge amount of search space).

Similar (but no the same) techniques used in proofs.

High computation time, but (hopefully) still manageable.

Formalized Search for FC-Families

Conclusions and Further Work

Conclusions

Formalization filled many gaps present in previous proofs.

Proofs were not wrong (as they usually are not), but were
imprecise.

A big contribution of the formalization is the separation
between abstract mathematical and computational content.

	Proof-by-Computation
	On Frankl's Conjecture
	Formalization
	Proof idea
	A Bit of Formality

	Conclusions and Further Work

