
An enumeration-free proof of Gödel's completeness theorem with
side e�ects

(work in progress)

Hugo Herbelin

3 February 2012

FATPA 2012

Belgrade

(revised 5/2/12)

1



The proof-as-programs correspondence

An intuitionistic proof is a purely functional program [Curry, 1958, Howard, 1969]

- a proof of A→ B is a program of the form x => p where x has type A and p has type B

- a proof of A ∧B is the same as the pair of an element of A and of an element of B

- deriving B from A→ B and A is the same as applying the given proof-function of type A→ B

to the given element of type A

- etc

2



The proof-as-program correspondence for classical logic

A classical proof is a program with control [Gri�n, 1990]

callcc/throw (ML languages) or call-with-current-continuation (Scheme) can be used

to prove ¬¬A→ A

Exception mechanisms (ML languages, Java, ...), or even setjump/longjump (in C) provide a

weak form of classical logic: they can be used to prove ¬¬A→ A when A is a formula without

implication nor universal quanti�cation type (this latter principle can be seen as a variant of

Markov's principle for predicate logic) [HH, 2010]

3



Is classical logic a side e�ect?

From the point of view of pure functional programming (Haskell, or the core of F#), control

operators implement side e�ects

To deal with side e�ects in Haskell, the common approach is to reason in a �monad� and to

extract afterwards pure contents by �running� the monad

Can we imagine adding other side e�ects to logic that could be cleared by �running� the monad?

4



Example of monadic programming: the state monad

To simulate the ability to read and write a global memory of type S without using any memory

at all, one sets

Tst(A) , S → S × A
and, whenever one wants to write a program of type A, we actually write a program of type

Tst(A)

To be able to write any functional program in a �monad� T , we need two operations1

η : A→ T (A) to enter the monad
∗ : (A→ T (B))→ T (A)→ T (B) to apply functions

run : T (base)→ base to �run� the monad on base types

which, in the case of the state monad, are implemented by:

η x , λs.(s, x)

f ∗ x , λs.let (s′, x′) = xs in f x′ s′

runx , let (_, x′) = xs0 in x′

where s0 is the initial value of the memory.

1These operations have to satisfy the equations η∗x = x, f∗(ηx) = fx, g∗(f∗x) = (g∗ ◦ f)∗x.

5



What did we gain?

What we gained is that in the state monad, the following two new operations are available for

free!

read : unit→ Tst(S)

write : S → Tst(unit)

which are implemented by:

read () , λs.(s, s)

write s′ , λ_.(s′, ())

6



Monadic-style vs direct-style: the case of classical logic

Remark: double-negation translation Tcont(A) , ¬¬A is the �continuation� monad that allows

to reason classically (i.e. using ¬¬A→ A) inside intuitionistic logic.

Conversely, classical logic can be seen as reasoning intuitionistically within the continuation

monad, but doing it in direct-style.

7



Monadic-style vs direct-style: the case of Markov's principle

There is a weak form of the continuation monad, namely the �exception� monad Texc(A) , A∨E
for supporting handing and raising exceptions in some type E.

This is enough to provide a predicate logic variant of Markov's principle (i.e. ¬¬A → A for A

without implication nor universal quanti�cation).

8



Monadic-style vs direct-style

It turns out that some form of memory assignment is used in logic: both of

- Kripke semantics based translations

- Cohen's forcing translation

correspond to providing monotonically memory assignment in monadic style.

Kripke semantics based translations (i.e. Tkr(A)(x) , ∀x′ ≥ xA(x′) for x ranging over W) is

a dependent form of the environment monad (Tenv(A) ,W → A) known to provide Lisp-style

dynamic bindings.

Cohen's forcing translation (Tforc(A)(x) , ∀x′ ≥ x∃x′′ ≥ x′A(x′′) for x ranging over some

domain S) is a dependent form of the state monad (Tst(A) , S → S × A).

What if we try to design a logical system that provides such kinds of memory assignment in

direct-style?

9



Towards a logic with side e�ects

We shall now describe a (sound) extension of second-order intuitionistic arithmetic with the

following two e�ects:

- exceptions (i.e. a weak form of classical logic)

- monotonically updatable memory

Note: Soundness comes by embedding into second-order intuitionistic arithmetic using a com-

bination of Kripke-style (dependent) environment monad, Friedman-style exception monad, and

Coquand-Hofmann's translation [1999].

10



Logical rules providing delimited direct-style exceptions and monotone memory
updates

A rule to simultaneously declare a memory x with initial value t and monotonically updatable

along a preorder≥ and an handler of exceptions of name α̂ in type U (this delimits the direct-style

use of the memory update and exception e�ects):

Γ, α̂ : ¬U(x), b : x ≥ t ` q : U(x) Γ ` r : preorder ≥ Γ ` s : monotone≥U(x)

Γ ` setx := t as b using (r, s) in#α̂ q : U(t)
seteff

A rule to monotonically update the value of the memory x (this provides in direct-style what

Kripke-style translation Tkr provides in monadic style):

Γ, b : x ≥ u(x′) ` q : U(x) Γ ` r : u(x) ≥ x (α̂ : ¬U(x)) ∈ Γ x′ fresh

Γ ` updatex := u(x) as (x′, b) by r in#α̂ q : U(u(x))
update

A rule to raise an exception of name α̂ in type U (this provides in direct-style what the exception

monad Texc provides in monadic style):

Γ ` p : U(x) (α̂ : ¬U(x)) ∈ Γ

Γ ` raiseα̂ p : B
abort

11



Application: an enumeration-free proof of Gödel's completeness

(Weak) completeness: if A is true in all modelsM, then A is provable

Let C0 be a formula and prove ¬̇C0

.
` ⊥̇. The idea is to consider an updatable variable Γ

initialized to ¬̇C0 with Γ
.
` ⊥̇ as objective and to take the syntactic model M0 de�ned by

A ∈M0 i� Γ
.
` A. We now have to prove the following:

(A→̇B) ∈M0 i� A ∈M0 → B ∈M0

(∀̇xA) ∈M0 i� ∀t A[t/x] ∈M0

⊥̇ ∈ M0 i� ⊥
¬̇¬̇A ∈M0 i� A ∈M0

i.e.
Γ

.
` A→̇B i� Γ

.
` A→ Γ

.
` B

Γ
.
` (∀̇xA) i� ∀tΓ

.
` A[t/x]

Γ
.
` ⊥̇ i� ⊥

Γ
.
` ¬̇¬̇A i� Γ

.
` A

where Γ is a monotonically updatable variable.

12



Application: an enumeration-free proof of Gödel's completeness

The two statements that use e�ects are:

⇐→̇ : (Γ
.
` A → Γ

.
` B) → Γ

.
` A→̇B

⇒⊥̇ : Γ
.
` ⊥̇ → ⊥

The proofs are:

⇐→̇ f , ˙IMPIΓ,A,B ḊN(Γ,A),B

updateΓ := (Γ, A, ¬̇B) as (Γ′, b) by r0 in

#α̂ ˙IMPEΓ,B,⊥̇(ȦX(Γ′,A),¬̇B,Γ b, f (ȦXΓ′,A,Γ φ(b)))

⇒⊥̇ p , raiseα̂ p

where r0 proves Γ ⊂ (Γ, A, ¬̇B) while b of type (Γ′, A, ¬̇B) ⊂ Γ and φ(b), obtained from b and

of type (Γ′, A) ⊂ Γ, respectively justify the correctness of the axiom rules. The relevant excerpt

of inference rules of the object language is:

p : (∆, A
.
` B)

˙IMPI∆,A,B p : (∆
.
` A→̇B)

p : ((∆′, A) ⊂ ∆)

ȦX∆′,A,∆ p : (∆
.
` A)

p : (∆, ¬̇A
.
` ⊥)

ḊN∆,A p : (∆
.
` A)

p : (∆
.
` A→̇B) q : (∆

.
` A)

˙IMPE∆,A,B (p, q) : (∆
.
` B)

13



Application: an enumeration-free proof of Gödel's completeness

In short, if we call H the proof of ∀M model(M) → C0 ∈ M, o0 and s0 proofs respectively

of the ordering of ⊂ and of (Γ ⊂ Γ′)→ (Γ
.
` A)→ (Γ′

.
` A) and ok0 the combination of ⇐→̇,

⇐∀̇, ⇐⊥̇, ⇒→̇, ⇒∀̇ and ⇒⊥̇ that shows thatM0 is a model, then the proof of
.
` C0 written as

a program is

complH , ḊN∅,C0
setΓ := ¬̇C0 as b using (o0, s0) in#α̂ ˙IMPEΓ,C0,⊥̇ (ȦX∅,¬̇C0,Γ b,HM0 ok0)

This proof is constructive... we can compute with it using exceptions and assignment!

The proof is also extensible to strong completeness: if A is true in all modelsM satisfying theory

T , then A is provable in some �nite subset of T .

14



Application: an enumeration-free proof of Gödel's completeness

Alternatively, the previous proof expresses in direct-style that the completeness theorem holds for

a model de�ned from its value on atoms by

Γ �M ⊥̇ , ⊥
Γ �M A→̇B , ∀Γ′ ⊃ Γ Γ′ �M A→ Γ′ �M B

Γ �M ∀xA , ∀t ∈ Dom(M) Γ �M A[t/x]

and such that Γ �M ¬¬A implies Γ �M A.

We recognise here that the proof with e�ects is similar to a direct-style formulation of the

completeness wrt Kripke semantics for the negative fragment of intuitionistic logic, this fragment

where intuitionistic logic precisely coincides with classical logic (in particular atoms are taken

pre�xed by a double negation).

15


