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Automatic Deduction in Geometry

Algebraic methods

@ Grobner bases [Kap86]
@ Wu's method [Wu78, Cho85, Cho88, Wan01, Wan04]
o Geometric Algebra [LWO00]

Synthetic
o Gelernter [Gel59]
@ Deductive database [cCsGzZ00]

| \

@ The area method [CGZ94]
e Full angle method [CGZ96]
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Outline

© Wu's method

© Formalization of Wu's method
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An algebraic method

The initial goal is to show that:
VAB....mN...Nhy=g
This goal is translated into:

VX, AHi(X)=0)= (g(X)=0)

where h; and g are multivariate polynomials in F(x1, ... xm).
We need to show that:

mZeros(h,-) C Zero(g)

Noted:

\Zero(h,-) - Zero(g)\
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The initial goal is to show that:
VAB....mN...Nhy=g
This goal is translated into:

VX, AHi(X)=0) = (g(X)=0)

where h; and g are multivariate polynomials in F(x1, ... xm).
We need to show that:

mZeros(h,-) C Zero(g)

Noted:

\Zero(h,-) - Zero(g)\

Only equalities — unordered geometry. J
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Which zeros ?
@ For elementary geometry, we are interested in ensuring the set of real
zeros of the hypothesis polynomials is contained in the set of real
zeros of the conclusion polynomial.

@ In practice, it often suffices to consider complex zeros instead of the
real zeros, but not always.

A,

(First) Incompleteness

Wu's method is incomplete as it considers only complex zeros.
For instance, Vx,y. x> +y2>=0 = x=0Ay = 0 is true in R but not in
C.

N\
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Nullstellensatz

o If3r, q1,...,qx g =)_;qihi then Zero(h;) C Zero(g).
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Nullstellensatz

o If3r, q1,...,qx g =)_;qihi then Zero(h;) C Zero(g).

o Hilbert's Nullstellensatz theorem states that if ¥ is algebraically
closed, then the converse is also true:

ar, q1,--.,qx & = Zqihi < Zero(h;) C Zero(g)

1

That is, we can always find such polynomials.
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Parallelogram
If AB || DC and AD || BC and Col EAC and Col EBD

then

AE = EC

P @
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Parallelogram
If AB || DC and AD || BC and Col EAC and Col EBD and —ColABC

then

AE = EC
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Non degeneracy conditions

@ Non degeneracy conditions (ndgs): p(x) # O0:
A+B

—Col ABC

—Parallel ABCD

@ Non degeneracy conditions is a central issue in formal geometry (see
[DDS00, Nar08] for instance)

e hard to find
e proofs of degenerated cases are often difficult

@ Wu's method generates non degeneracy conditions

Zero(h UZero ndgs) C Zero(g)
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The main ideas: hi = —xg*(yp —yc)

o hy = xpx*yc+yp*(xg—xc)
© Algebraization hs = Xg* —yc + YE * xC
In practice the choice of a he = (xg—xg)*yp+
coordinate system is crucial. VE * (X8 — Xp)
g = XE_- + y,%—

(xe — xc)* + (ye — yc)?

(0,0) (xb,0)
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The main ideas:

O Algebraization
In practice the choice of a
coordinate system is crucial.

@ Triangulation XA YA XB YB XC Yq XD YD XE YH
X X X X X X | X X

In general triangulation is slow, X X X X X X|X X
but constructive geometry X X X X X X|X X X X
statements are almost in X X X X X X[|X X X X

triangular form.
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The main ideas:

O Algebraization
In practice the choice of a
coordinate system is crucial.

@ Triangulation
(using pseudo-division)
In general triangulation is slow,
but constructive geometry
statements are almost in
triangular form.

© Successive pseudo-division:
divide the goal by the
hypotheses
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The main character: pseudo-division

Pseudo-division of g by h in the variable v

akg =qh+r

where a is the leading coefficient of h and deg(r,v) < deg(h, v)

v

If we know that r = 0 then :

VX h(X)=0Ana(X)#0 = g(X)=0

| \

Remark 2
r = prem(g, h) belongs to the ideal generated by g and h:

r=a"xg+(—q)xh

A\
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Successive pseudo-division

sprem(g, [h1, ..., hn]) = sprem((premg(g, hn), [h1,. .., ha—1])

all‘la "g = qih1+ gohy + ...+ qphp +r

If we know that r = 0 then :

h(X)=0A...Ahy(X)=0
VX A — g(X)=0
a1(X)#£O0A...Aap(X) £0
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Completeness of the method

What does that mean if r £0 7

For some triangulation process (Ritt/Wu's characteristic sets) a theorem
of Wu states that:

o Either the system is not irreducible

@ or the theorem is generally false in metric geometry.

Génevaux-Narboux-Schreck (UdS) Wau's Simple Method in Coq FATPA 2012, Belgrade, Serbia 12 /37



© Formalization of Wu's method
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Available approaches

o Ltac

© High-level language

® Hard to debug

® Generate large proofs terms
@ Ocaml

© Full programming language
© Easier to debug
® Need to generate proof term
e Coq itself (a reflexive approach)
© Generate small proofs terms
Termination should be proved
e Using a certificate/validator approach
® It is not possible to prove completeness
© Certificate generator can be written using a different
programming language, use heuristics, ...
© Same validator can be used for several provers
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Our choices:

@ Ltac : algebraization, choice of a reference, simplification
@ Triangulation and successive pseudo-division:

e Ocaml: certificate generation
e Cogq: validator using reflection

v

@ We can only extract a (self certifying) prover for the core of Wu's
method

N,

Génevaux-Narboux-Schreck (UdS) Wau's Simple Method in Coq FATPA 2012, Belgrade, Serbia 15 / 37



Link between algebraic definition and synthetic geometry

In his Phd (12/2011), Tuan Minh Pham proves that:

Lemma transcol :

forall (A B C : Point), col A B C —>

(X A-X B)*(Y C-Y B)-(Y A-Y B)*(X C-X B)=0.
Lemma transparallel :

forall (A B CD : Point),

parallelline (line A B ) (line C D) —>

(X B-X A)*(Y D-Y C)=(Y B-Y A)*(X D-X C).
Lemma transliesOn :

forall (A B C : Point),

liesOnLine A (line B C) ->

(X B-X A)*(Y C-Y B)-(Y B-Y A)*(X C-X B)=0.
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Lemma transperpendicular :

forall (A B CD : Point),

perpencicular (line A B) (line C D) ->

(X B-X A)*(X D-X C)+(Y B-Y A)*(Y D-Y C)=0 .
Lemma transsamedistance :=

forall (A B CD : Point),

distance A B = distance C D —>

(X B-X A)2 + (Y B-Y A)2=(X D-X C)2 + (Y D-Y C)2.
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Choice of a coordinate system: the lemmas

In practice the choice of a convenient coordinate system is crucial.
Following John Harrison's " Without loss of generality” [Har09], we show
that the predicates are invariant under translation and rotation.

Example: collinear

Lemma collinear_inv_translation: forall A B C V,
collinear A B C <>
collinear (trans A V) (trans B V) (trans C V).

Lemma collinear_inv_rotation: forall A B C cos sin,
cos*cos + sink*sin = 1 ->
(collinear A B C <—>
collinear (rot A cos sin) (rot B cos sin) (rot C cos sin)).

v

Proofs can be done using ring/Grébner basis.
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Choice of a coordinate system: the tactic

Algebraization O | H

The following predicates/functions are available:

collinear, parallel, orthogonal, midpoint, intersection of lines, square of
length, equality of points, angles or lengths.

@ The tactic can not deal with user defined predicates automatically.

Adding a new predicate requires to add the lemmas for invariance
under translation and rotation and to update the tactic.
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Design of the certificate

Main idea:
Provide r, | and q1, ..., gk such that:

/xgr:Zq;xh;

Grégoire, Pottier, Théry's idea:

Use let ... in to compress this certificate using sharing (straight line
programs).

let p1 = g1 % h1 + g2 * hy in
let pp = g3 * p1+ qa x hy in
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Generation of the certificate

We need a prover based on Wu's method which generate a certificate.
o Existing implementations either not open source or relying on
proprietary CAS (Maple)®.
@ We aim at integration into Coq.
Hence we developed our own implementation of Wu's method in Ocaml

based on a slightly optimized version of Loic Pottier library for multivariate
polynomials.

Second incompleteness

Our implementation is incomplete because we do not check polynomials
for irreducibility (this requires factorization).

1OpenGeoProver was not available when we started this work:
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Certificates generation

We generate certificates for:

© The pseudo-division
@ The successive pseudo-division

© Triangulation
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Certificate generation |

@ We just need to keep the quotient and the lead coefficient:

r=a"xg+(—q)xh

let pseudo_div_num g h x certif =
let (r,a,k,q) = pseudo_div (g.p) (h.p) x in
let new_n = new_num () in
certif := (new_n, r, [(a""k, g.n);(p_zero -- q, h.n)])
::(lcertif);
{p=r ; n= new_n}
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Certificate generation Il

@ We know that :
| x g = Z(t,' X S,') + rfinal

1

where
i—1
d;
si=ax [[ ¢
j=1

© The triangulation phase is based on pseudo-division.

Invariant: the polynomials are in the ideal generated by the
hypotheses.

[hl,...,h,-,...,hj,...,h,,]—>[hl,...,h,-,...,prem(h,-,hj,v),...,h,,]
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Certificate generation Il

e To prove correctness we do not need to prove that the triangulation phase
really triangulates.

o This shows that proving the method in Coq itself would not be so difficult.
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Checking the certificate

Algorithm

e Computing / x g" and ), q; X h;
@ Checking equality using ring tactic normalization function

We reuse the validator proven correct by Grégoire, Pottier and Théry.

Technical limitation:
All shared polynomials must be in the ideal.

@ Well-adapted to Grobner basis
@ Using Wu's method some other polynomials could be shared.
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Theorem Wu / Caml | Wu / Coq | GB / Coq | Wu / GB
Pascal 2 0.013 21 - -
Pascal_1 0.024 22 1652 X75
Ptolemy95 | 0.010 10 30 x3
Pappus 0.043 3 8 x2.6
Altitudes 0.002 3 7 x2.3
Simson 0.002 5 8 x1.6
Perp-bisect | 0.001 2 3 x1.5
Pythagore 0.001 1 1 x1
Feuerbach 0.038 15 15 x1
Isoceles 0.001 1 1 x1
Euler Line | 0.063 9 6 x0.6
Medians 0.001 3 2 x0.6
Chords 0.015 4 2 x0.5
Thales 0.003 6 3 x0.5
Bissectors 0.001 6 3 x0.5
Desargues 0.027 99 10 x0.1
Ceva 0.025 98 6 x0.06

Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz with 4Gb RAM.

Génevaux-Narboux-Schreck (UdS)

Wu's Simple Method in Coq

FATPA 2012, Belgrade, Serbia
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Checking certificate using Ocaml:
o Between 1% and 80%
@ On average: 50%
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o Certificate based approaches are flexible: we could reuse Pottier et al.
checker.

o But certificate checking time is significant.
@ Wu's method and Grobner basis seems to be complementary.

Perspectives

@ Implement the full method of Wu.

o Add automatic geometrization.

@ Add automatic choice of a reference.

@ Other data-structure for certificates (pseudo-division 7).
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Questions ?
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