
Automated evaluation of students’

programs:

Testing, Verification and Similarity

Milena Vujošević-Janičić, Mladen Nikolić and Dušan Tošić

— early stage work —
Fifth Workshop on Formal and Automated Theorem Proving

and Applications
Belgrade,

February 3-4, 2012.

Agenda

• Motivation

• Testing

• Verification

• Program Similarity

• Conclusions and Further work

1

Agenda

• Motivation

• Testing

• Verification

• Program Similarity

• Conclusions and Further work

2

Motivation

• An automated quality evaluation tool

• Benefits for students: evaluation and guidance in absence of

a teacher

• Benefits for teachers: automated marking of exams and error

detection

3

Motivation

• Starting point: problem & teacher’s solution

• Input: student’s solution

• Output: evaluation of student’s solution

4

Motivation

• The approach integrates three features:

– Testing — functional correctness

– Verification — buffer overflows, null pointer dereferenc-

ing, division by zero ...

– Similarity — modularity and structural simplicity

5

Agenda

• Motivation

• Testing

• Verification

• Program Similarity

• Conclusions and Further work

6

Testing

• Successful testing indicates functional correctness

• Test cases — given by a teacher or automatically generated

• Problems with comparing outputs

• Definition of a problem — precise and accurate

7

Agenda

• Motivation

• Testing

• Verification

• Program Similarity

• Conclusions and Further work

8

Verification

• LAV* is a bug-finding tool, it is open source

• LAV combines symbolic execution, SAT encoding of pro-
gram’s behavior and bounded model checking

• LAV generates correctness conditions that are passed to a
suitable SMT solver

• More details on LAV can be found in our VSTTE’12 paper
or at http://argo.matf.bg.ac.rs/?content=lav

*Joint work with Viktor Kuncak, EPFL and Filip Maric
LLVM based Automated Verifier

9

Verification: Experiments

• 157 programs written by students at exams during an intro-

ductory course in programming analyzed

Avg. Avg. Avg.
Problem # Solutions Lines Reported Bugs False Alarms

calculations 60 30 0.82 0.05
arrays and matrices 71 46 4.20 0

strings and structures 26 60 2.92 1.11

Summary 157 42 2.69 0.20

10

Verification: Analysis of Results

calculations & strings and
arrays and matrices structures

Most frequent bug buffer overflow null pointer
dereferencing

programs with the above bug 81 15
bugs 225 46

Second most frequent bug devision by zero buffer overflow

programs with the abouve bug 22 15
bugs 22 30

11

Verification: Analysis of Results

• The vast majority of bugs due to wrong expectations e.g.,

that input parameters of programs will meet certain con-

straints

• This explains the large number of bugs in the corpus —

adding only one check in a program would typically eliminate

several bugs

• LAV could help students to remember to put these checks

12

Agenda

• Motivation

• Testing

• Verification

• Program Similarity

• Conclusions and Further work

13

Program Similarity

• Testing and verification — functional correctness and bugs

• Modularity

• Structural simplicity

14

Program Similarity

if(a<b) n = a; n = min(a, b);

else n = b;

1. if(c<d) m = c; m = min(c, d);

else m = d;

for(i=0; i<n; i++) for(i=0; i<n; i++)

for(j=0; j<n; j++) m[i][i] = 1;

2. if(i==j)

m[i][j] = 1;

3. for(i=0; i<strlen(s); i++) for(i=0; s[i]; i++)

15

Program Similarity

• Control flow graph represents the structure of a program

• Program similarity — similarity of CFGs

• CFG similarity measure should reflect intuitive similarity of
programs

• CFG similarities are computed as described in (Mladen Nikolic,
2013).

• First experimental results are encouraging

16

Agenda

• Motivation

• Testing

• Verification

• Program Similarity

• Conclusions and Further work

17

Conclusions and Further work

• What we have:

– Some experience in automated testing

– Software verification tool LAV

– Program similarity measure

• What we need to do:

– Define a framework for testing

– Elimination of false alarms

– Improvement of program similarity measure

– Integration of all three parts into a web tool

18

Thank you

19

Bibliography

Milena Vujosevic Janicic, Viktor Kuncak, 2012 — Develop-

ment and Evaluation of LAV: An SMT-Based Error Finding

Platform. Verified Software, Theories, Tools, and Experi-

ments 2012:98-113

Mladen Nikolic, 2013 — Measuring Similarity of Graph Nodes

by Neighbor Matching, Intelligent Data Analysis, 2013.

20

Verification: One Simplified Student’s Code
line 12: UNSAFE

1: #include<stdio.h> line 18: UNSAFE
2: #include<stdlib.h> line 19: UNSAFE
3: int power(int n) line 20: 12: UNSAFE
4: {
5: int i, pow; function: get_digit
6: for(i=0, pow=1; i<n; i++, pow*=10); error: division_by_zero
7: return pow; line 12: d == 1073741824,
8: }
9: function: main
10: int get_digit(int n, int d) error: buffer_overflow
11: { line 18: argc == 1, argv == 1
12: return (n/power(d))%10;
13: } function: main
14: error: buffer_overflow
15: int main(int argc, char** argv) line 19: argc == 2, argv == 1
16: {
17: int n, d; function: main
18: n = atoi(argv[1]); error: division_by_zero
19: d = atoi(argv[2]); line 20: 12: argc == 512,
20: printf("%d\n", get_digit(n, d)); argv == 1,
21: } d == 1073741824, n == 0

21

