Geometric constructions, first order logic and implementation

Pascal Schreck

Université de Strasbourg - LSIIT, UMR CNRS 7005
5th WS on Formal And Automated Theorem Proving
and Applications
February 2012

ntroduction
Problematics

An example

First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and inferences

Some domains where geometric constructions (could) appear

- Education: Statement \rightarrow program of construction

Let d_{1} and d_{2} be 2 parallel lines, $A \in d_{1}$ and $B \in d_{2}$ be two points, and O be any point, how to construct a line Δ passing through O and meeting d_{1} in M and d_{2} in N such as $A M+B N=k$, (k is a given constant).

- Technical drawing: sketch \rightarrow precise drawing

- Architecture, photogrammetry (projections \rightarrow 3D-objects), curves et surfaces, molecule problem, robotic...

This talk is focused on the first domain.

Geometric constructions
 Pascal Schreck

Back to school

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and Expressiveness Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

Back to school

Pascal Schreck

Exercice

Let d_{1} and d_{2} be 2 parallel lines, $A \in d_{1}$ and $B \in d_{2}$ be two points, and O be any point, how to construct a line Δ passing through O and meeting d_{1} in M and d_{2} in N such as $A M+B N=k,(k$ is a given constant $)$.

Back to school

Exercice

Let d_{1} and d_{2} be 2 parallel lines, $A \in d_{1}$ and $B \in d_{2}$ be two points, and O be any point, how to construct a line Δ passing through O and meeting d_{1} in M and d_{2} in N such as $A M+B N=k,(k$ is a given constant $)$.

Let P be on d_{1} at distance k from A $A M+M P=k=A M+B N$ it is easy to see that (M, P, N, B) is a parallelogram

Back to school

Exercice

Let d_{1} and d_{2} be 2 parallel lines, $A \in d_{1}$ and $B \in d_{2}$ be two points, and O be any point, how to construct a line Δ passing through O and meeting d_{1} in M and d_{2} in N such as $A M+B N=k,(k$ is a given constant $)$.

construction :
Draw point P on $d 1$ at distance k from A
Construct point I as the midpoint of P and A Draw Δ as line (OI)

Back to school

Exercice

Let d_{1} and d_{2} be 2 parallel lines, $A \in d_{1}$ and $B \in d_{2}$ be two points, and O be any point, how to construct a line Δ passing through O and meeting d_{1} in M and d_{2} in N such as $A M+B N=k,(k$ is a given constant $)$.

$$
\begin{aligned}
& A, B, O, d_{1}, k: \text { free } \\
& \left(A \text { is on } d_{1}\right) \\
& d_{2}=\operatorname{lpd}\left(B, \operatorname{dir}\left(d_{1}\right)\right) \\
& P=\operatorname{interlc}\left(d_{1}, \operatorname{cir}(A, k)\right) \\
& I=\operatorname{mid}(P, B) \\
& \Delta=\operatorname{lpp}(O, I)
\end{aligned}
$$

Testing the construction

Introduction

Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

Testing the construction

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

Testing the construction

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

Testing the construction ...

Explanation

Point O being in this position, (M, P, N, B) is no more a parallelogram, but (M, P, B, N) is.
This leads to another construction where:
$\Delta=\operatorname{lpd}(O, \operatorname{dir}(\operatorname{lpp}(P, B)))$.

Discussion (1)

Pascal Schreck

ntroduction
Problematics
An example

Ruler and compass

Discussion (2) ... a lot of cases

Introduction

Problematics

An example

First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition,
exception
Geometric proofs High level rules

A Program of Construction

A, B, D, k, di : free
$\mathrm{d} 1=\operatorname{lpd}(\mathrm{A}, \mathrm{di})$
$\mathrm{d} 2=\operatorname{lpd}(\mathrm{B}, \mathrm{di})$
$\mathrm{C}=\operatorname{cir}(\mathrm{A}, \mathrm{k})$
for P in interlc(d1, C)
for case

case $\operatorname{pll}(M, P, N, B):$	case $p l l(M, P, B, N):$
$I=\operatorname{mid}(P, B)$	if $P<>B$ then
if $I<>O$ then	$d 3=\operatorname{lpp}(P, B)$
Delta $=\operatorname{lpp}(O, I)$	di3 $=\operatorname{dir}(d 3)$
else	Delta $=\operatorname{lpd}(0, \operatorname{di} 3)$
fail	else
endif	fail
	endif endcase endfor

case pll(M,P,B,N):
if P <> B then
d3 $=\operatorname{lpp}(\mathrm{P}, \mathrm{B})$
di3 $=\operatorname{dir}(\mathrm{d} 3)$
Delta $=1 p d(0, d i 3)$
else
fail
endif endcase endfor

Problematics
An example

Ruler and compass
Formalization of
geometry
Signature and
Expressiveness
Axiomatic and inferences

Formalization and first order logic

Introduction
Problematics
An example
First order logic
Ruler and compass Formalization of geometry
Signature and Expressiveness Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules
Conclusion

Ruler and compass constructions

Definition

A point P is said RC-constructible from base points $\left\{B_{0}, \ldots, B_{k}\right\}$ if there is a finite sequence of points $\left\{P_{0}, \ldots, P_{n}\right\}$ such that each point P_{i} is either a base point, or a the intersection of lines or circles built from
$\left\{P_{0}, \ldots, P_{i-1}\right\}$ and $P=P_{n}$

Result

The problem of ruler and compass construction is not expressible in first order logic because of the notion of finiteness.

Ruler and compass Formalization of geometry

RC-construction and Tarski's elementary geometry

Quoting Tarski

For instance, the statement that every angle can be divided into three congruent angles is an elementary sentence in our sense [...]. On the other hand, the general notion of constructibility by rule and compass cannot be defined in elementary geometry, and therefore the statement that an angle in general cannot be trisected by rule and compass is not an elementary sentence.

Ruler and compass Formalization of

Formalization of geometry

- Euclide, Hilbert
- Tarski

Fact: Tarski's elementary geometry does not include RC constructions

- RC-constructible geometry (J. Duprat, Coq)
- Algebraic: the association of Wu (or Grobner basis) and Lebesgue's methods results into a decidability procedure (G. Chen implemented it in Maple)

We consider here an ad hoc formalization (in the same spirit than F. Guilhot did) in multi-sorted first order logic.

Syntactic considerations

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry

Signature and

 ExpressivenessAxiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

An example of geometric signature

We have to consider something like that: signature SIMP-SIGN-GEOM sorts
length
point
line
circle
functional symbols
dist: point point \rightarrow length
radius: circle \rightarrow length
interll: line line \rightarrow point
intercl: circle line \rightarrow point
predicative symbols
is-onl: point line \rightarrow
is-onc: point circle \rightarrow

Pascal Schreck

Signature and expressiveness

But ...

Problems

- partial functions
- multi-functions
- cases of figure

Introduction

Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

Signature and expressiveness

Pascal Schreck

But ...

Problems

- partial functions
- multi-functions
- cases of figure

A possible answer

- pre-conditions
- numbered functions
- axioms with disjunctions

ntroduction

Problematics

An example

Signature and expressiveness

Pascal Schreck

But ...

Problems

- partial functions
- multi-functions
- cases of figure
short discussion
pre-conditions + numbered functions vs relations ?

A possible answer

- pre-conditions
- numbered functions
- axioms with disjunctions

Problematics

An example

First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and
inferences
Implementation
Different kinds of inference
Permutation, decomposition exception
Geometric proofs
High level rules

Signature and expressiveness

But ...

Problems

- partial functions
- multi-functions
- cases of figure

Expressiveness

- pre-conditions
- numbered functions
- axioms with disjunctions

```
mid(A,B) =
```

mid(A,B) =
if A=B then A
if A=B then A
else
else
interll(line(A,B),
interll(line(A,B),
line(intercc1(ccr(A,dist(A,B)), ccr(B, dist(A,B))),
line(intercc1(ccr(A,dist(A,B)), ccr(B, dist(A,B))),
intercc2(ccr(A,dist(A,B)), ccr(B,dist(A,B)))))

```
intercc2(ccr(A,dist(A,B)), ccr(B,dist(A,B)))))
```


Constructibility vs construction

Constructibility

For a given constraint system $\mathcal{C}(\mathcal{X}, \mathcal{A})$, with unknowns \mathcal{X} and parameters \mathcal{A}, prove

$$
\forall \mathcal{A} \exists \mathcal{X}, \mathcal{C}(\mathcal{X}, \mathcal{A})
$$

Construction

For a given constraint system $\mathcal{C}(\mathcal{X}, \mathcal{A})$, with unknowns \mathcal{X} and parameters \mathcal{A}, find F such that,

$$
\forall \mathcal{A}, \forall \mathcal{X}, \mathcal{C}(\mathcal{X}, \mathcal{A}) \Leftrightarrow \mathcal{X}=F(\mathcal{A})
$$

Again, the geometric construction problem is out of the first order logic.

Logical expression of construction

Pascal Schreck

In fact, the previous examples let you suspect, that it is a bit more complicated, we have to consider the bigger formula:

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and
Expressiveness
Axiomatic and
inferences
Implementation
Different kinds of
inference
Permutation,
decomposition,
exception
Geometric proofs
High level rules

Logical expression of construction

In fact, the previous examples let you suspect, that it is a bit more complicated, we have to consider the bigger formula:

$$
\begin{aligned}
& \forall \mathcal{A} \forall \mathcal{X} \\
& {\left[\begin{array}{l}
\mathcal{C}(\mathcal{X}, \mathcal{A}) \\
\Leftrightarrow \\
\left(\begin{array}{l}
\left(\delta_{1}(\mathcal{A}) \supset \mathcal{X}=F_{1,1}(\mathcal{A}) \vee \ldots \vee \mathcal{X}=F_{1, k_{1}}(\mathcal{A})\right) \\
\\
\wedge\left(\delta_{2}(\mathcal{A}) \supset \mathcal{X}=F_{2,1}(\mathcal{A}) \vee \ldots \vee \mathcal{X}=F_{2, k_{2}}(\mathcal{A})\right) \\
\ldots \\
\\
\wedge\left(\delta_{l}(\mathcal{A}) \supset \mathcal{X}=F_{l, 1}(\mathcal{A}) \vee \ldots \vee \mathcal{X}=F_{l, k_{l}}(\mathcal{A})\right) \\
\\
\wedge(\Delta(\mathcal{A}) \supset \Psi(\mathcal{X}, \mathcal{A})) \\
\wedge(\Omega(\mathcal{A}) \supset \perp)
\end{array}\right. \\
\wedge\left(\delta_{1}(\mathcal{A}) \vee \ldots \vee \delta_{l}(\mathcal{A}) \vee \Delta(\mathcal{A}) \vee \Omega(\mathcal{A})\right)
\end{array}\right.}
\end{aligned}
$$

where all the predicative and functional terms but \mathcal{C}, are to be discovered.

Example (1)

Pascal Schreck

$$
\begin{aligned}
& \forall c_{1}: \text { circle, } c_{2}: \text { circle, } x: \text { point. } \\
& {\left[\begin{array}{l}
\left(x \text { is-onc } c_{1} \wedge x \text { is-onc } c_{2}\right) \\
\Leftrightarrow \\
\left(\begin{array}{c}
\left(\delta_{1}\left(c_{1}, c_{2}\right) \supset x=\operatorname{intercc1}\left(c_{1}, c_{2}\right)\right. \\
\left.\vee x=\text { intercc2 }\left(c_{1}, c_{2}\right)\right) \\
\wedge\left(c_{1}=c_{2} \supset x \text { is-onc } c_{1}\right) \\
\wedge\left(\neg \delta_{1}\left(c_{1}, c_{2}\right) \wedge c_{1} \neq c_{2} \supset \perp\right)
\end{array}\right)
\end{array}\right]} \\
& \wedge\left(\delta_{1}\left(c_{1}, c_{2}\right) \vee\left(\neg \delta_{1}\left(c_{1}, c_{2}\right) \wedge\left(c_{1} \neq c_{2}\right)\right) \vee c_{1}=c_{2}\right)
\end{aligned}
$$

where δ_{1} is defined by:

$$
\delta_{1}\left(c_{1}, c_{2}\right) \Leftrightarrow
$$

$\left|\operatorname{radius}\left(c_{1}\right)-\operatorname{radius}\left(c_{2}\right)\right| \leq \operatorname{dist}\left(\operatorname{center}\left(c_{1}\right)\right.$, center $\left.\left(c_{2}\right)\right)$

$$
\wedge
$$

$\operatorname{dist}\left(\operatorname{center}\left(c_{1}\right)\right.$, center $\left.\left(c_{2}\right)\right) \leq \operatorname{radius}\left(c_{1}\right)+\operatorname{radius}\left(c_{2}\right)$

Example (2)

Pascal Schreck

ntroduction

Problematics

An example

Ruler and compass
Formalization of

geometry

Signature and
Expressiveness
Axiomatic and inferences
else if $c_{1}=c_{2}$ then x is-onc c_{1}
else fail\}

Axioms system and inferences

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules
Conclusion

Simple example of ad-hoc system of axioms

```
dist}(X,Y)=\operatorname{dist}(Y,X
mid}(X,Y)=\operatorname{mid}(Y,X
X is-onl Z\wedge Y is-onl Z\wedgeX\not= Y\supsetZ = lpp(X,Y)
Z = lpp(X,Y) \supset X is-onl Z ^ Y is-onl Z
O = center (C) ^L = radius( }C\supsetC=\operatorname{cor}(O,L
C = ccr (O,L) \supsetL= radius(C)^O = center(C)
Xis-onl }\mp@subsup{D}{1}{}\wedgeX\mathrm{ is-onl }\mp@subsup{D}{2}{}\wedge\mp@subsup{D}{1}{}\not=\mp@subsup{D}{2}{}\supsetX=\operatorname{interll}(\mp@subsup{D}{1}{},\mp@subsup{D}{2}{}
X = interll (D, D D ) \supset X is-onl D D ^ X is-onl D D 
iso( }A,B,C)\supsetB\not=
dist}(A,B)=K\supsetB\mathrm{ is-onc ccr( }A,K
lpp}(A,B)\mathrm{ ortho }\operatorname{lpp}(A,C)\wedgeB\not=C\supsetA\mathrm{ is-onc cdiam(B,C)
dist}(A,B)=\operatorname{dist}(A,C)\wedgeB\not=C\supset iso(A,B,C
iso(A,B,C) \supset dist (A,B) = dist (A,C)
M is-onc C \supset dist(center(C),M) = radius(C)
```


Simple example of ad-hoc system of axioms

```
dist}(X,Y)=\operatorname{dist}(Y,X
mid}(X,Y)=\operatorname{mid}(Y,X
X is-onl Z\wedge Y is-onl Z\wedgeX\not= Y\supsetZ = lpp(X,Y)
Z = lpp(X,Y) \supset X is-onl Z ^ Y is-onl }
O = center (C) ^L = radius( }C\supsetC=\operatorname{cor}(O,L
C = ccr (O,L) \supsetL= radius(C)^O = center (C)
Xis-onl }\mp@subsup{D}{1}{}\wedgeX\mathrm{ is-onl }\mp@subsup{D}{2}{}\wedge\mp@subsup{D}{1}{}\not=\mp@subsup{D}{2}{}\supsetX=\operatorname{interll}(\mp@subsup{D}{1}{},\mp@subsup{D}{2}{}
X = interll (D, D D ) \supset X is-onl D D ^ X is-onl D D 
iso( }A,B,C)\supsetB\not=
dist}(A,B)=K\supsetB\mathrm{ is-onc ccr( }A,K
lpp}(A,B)\mathrm{ ortho }\operatorname{lpp}(A,C)\wedgeB\not=C\supsetA\mathrm{ is-onc cdiam(B,C)
dist}(A,B)=\operatorname{dist}(A,C)\wedgeB\not=C\supset iso(A,B,C
iso(A,B,C) \supset dist (A,B) = dist (A,C)
M is-onc C \supset dist(center(C),M) = radius(C)
```


Simple example of ad-hoc system of axioms

Pascal Schreck

```
dist(X,Y) = dist(Y,X)
mid}(X,Y)=\operatorname{mid}(Y,X
X is-onl }Z\wedgeY\mathrm{ is-onl }Z\wedgeX\not=Y\supsetZ=lpp(X,Y
Z = lpp (X,Y) \supset X is-onl Z }\Y\mathrm{ is-onl Z
O = center ( C) ^L = radius( C \supset C = ccr( O, L)
C=ccr(O,L) \supsetL= radius(C)^O= center(C)
Xis-onl D D ^ X is-onl D D ^ D D # 焐 \supset X =interll ( }\mp@subsup{D}{1}{},\mp@subsup{D}{2}{}
X = interll( (D, D2 ) \supsetX is-onl D D ^ X is-onl D
iso(A,B,C)\supsetB\not=C
dist}(A,B)=K\supsetB is-onc ccr(A,K
lpp}(A,B)\mathrm{ ortho lpp (A,C)^B#C })A\mathrm{ is-onc cdiam(B,C)
dist}(A,B)=\operatorname{dist}(A,C)\wedgeB\not=C\supset\mathrm{ iso(A,B,C)
iso(A,B,C) \supset\operatorname{dist}(A,B)=\operatorname{dist}(A,C)
M is-onc C \supset dist(center (C),M)= radius(C)
```


Simple example of ad-hoc system of axioms

```
dist}(X,Y)=\operatorname{dist}(Y,X
mid}(X,Y)=\operatorname{mid}(Y,X
X is-onl Z\wedge Y is-onl Z\wedgeX\not= Y\supsetZ = lpp(X,Y)
Z = lpp(X,Y) \supset X is-onl Z ^ Y is-onl }
O = center (C) ^L = radius( }C\supsetC=\operatorname{cor}(O,L
C=\operatorname{cor}(O,L)\supsetL=\operatorname{radius}(C)\wedgeO=\operatorname{center}(C)
Xis-onl }\mp@subsup{D}{1}{}\wedgeX\mathrm{ is-onl }\mp@subsup{D}{2}{}\wedge\mp@subsup{D}{1}{}\not=\mp@subsup{D}{2}{}\supsetX=interll( (D1, D D )
X = interll (D, D D ) \supset X is-onl D D ^ X is-onl D D
iso(A,B,C) \supsetB\not=C
dist}(A,B)=K\supsetB\mathrm{ is-onc ccr( }A,K
lpp}(A,B)\mathrm{ ortho }\operatorname{lpp}(A,C)\wedgeB\not=C\supsetA\mathrm{ is-onc cdiam(B,C)
dist}(A,B)=\operatorname{dist}(A,C)\wedgeB\not=C\supset iso(A,B,C
iso(A,B,C) \supset dist (A,B) = dist (A,C)
M is-onc C \supset dist(center(C),M) = radius(C)
```


Simple example of ad-hoc system of axioms

$\operatorname{dist}(X, Y)=\operatorname{dist}(Y, X)$
$\operatorname{mid}(X, Y)=\operatorname{mid}(Y, X)$
X is-onl $Z \wedge Y$ is-onl $Z \wedge X \neq Y \supset Z=\operatorname{lpp}(X, Y)$
$Z=\operatorname{lpp}(X, Y) \supset X$ is-onl $Z \wedge Y$ is-onl Z
$O=\operatorname{center}(C) \wedge L=\operatorname{radius}(C \supset C=\operatorname{ccr}(O, L)$
$C=\operatorname{ccr}(O, L) \supset L=\operatorname{radius}(C) \wedge O=$ center (C)
X is-onl $D_{1} \wedge X$ is-onl $D_{2} \wedge D_{1} \neq D_{2} \supset X=$ interll $\left(D_{1}, D_{2}\right)$
$X=$ interll $\left(D_{1}, D_{2}\right) \supset X$ is-onl $D_{1} \wedge X$ is-onl D_{2}
iso $(A, B, C) \supset B \neq C$

```
dist}(A,B)=K\supsetB\mathrm{ is-onc ccr (A,K)
lpp}(A,B)\mathrm{ ortho lpp}(A,C)\wedgeB\not=C\supsetA is-onc cdiam(B,C
dist}(A,B)=\operatorname{dist}(A,C)\wedgeB\not=C\supset\mathrm{ iso(A,B,C)
iso(A,B,C) \supsetdist (A,B) = dist (A,C)
M is-onc C \supset dist(center(C),M)=radius(C)
```


First order and a little bit more: a toy example

A toy axiomatic:
(A1)
$\forall x, o, r(\operatorname{app}(x, \operatorname{ccr}(o, r)) \Leftrightarrow \operatorname{egd}(x, o, r))$
(A2)
$\forall C_{1}, C_{2} \exists x\left(\operatorname{app}\left(x, C_{1}\right) \wedge \operatorname{app}\left(x, C_{2}\right)\right)$
we want to prove:
(F) $\quad \forall a \forall b \forall I_{1} \forall I_{2} \exists x \cdot\left(\operatorname{egd}\left(a, x, l_{1}\right) \wedge \operatorname{egd}\left(b, x, l_{2}\right)\right)$

By refutation and applying Skolem's method, we have:

$$
\begin{gather*}
\neg \operatorname{egd}\left(a, X, I_{1}\right) \vee \neg \operatorname{egd}\left(b, X, I_{2}\right) \tag{1}\\
\neg \operatorname{app}(X, \operatorname{ccr}(O, R)) \vee \operatorname{egd}(X, O, R) \tag{2}\\
\operatorname{app}(X, \operatorname{ccr}(O, R)) \vee \neg \operatorname{egd}(X, O, R) \tag{3}\\
\operatorname{app}\left(i\left(C_{1}, C_{2}\right), C_{1}\right) \tag{4}\\
\operatorname{app}\left(i\left(C_{1}, C_{2}\right), C_{2}\right) \tag{5}
\end{gather*}
$$

```
egd(O, X, R) :- app(X, ccr(O, R)).
app(i(C1, C2), C1).
app(i(C2, C1), C2).
app(X, ccr(O, R)) :- egd(O, X, R).
```

Goal:

$$
?-\operatorname{egd}(a, C, l 1), \operatorname{egd}(b, C, l 2) .
$$

Prolog's answer:

$$
\mathrm{C}=\mathrm{i}(\operatorname{ccr}(\mathrm{a}, \mathrm{l} 1), \operatorname{ccr}(\mathrm{b}, \mathrm{l} 2))
$$

A step forward FO : the 'known' predicate

The idea is to mimick Prolog behavior with more control.
For every sort α, we define the predicate known: known : $\alpha \rightarrow$
(known : $\alpha \rightarrow$ Prop, for the Coq addicts)
With the following axioms for every functionnal symbol $f: s_{1} \ldots s_{k} \rightarrow s:$
$\forall x_{1}: s_{1} \ldots \forall x_{k}: s_{k}$,
$\operatorname{known}\left(x_{1}\right) \wedge \ldots \operatorname{known}\left(x_{k}\right) \supset \operatorname{known}\left(f\left(x_{1}, \ldots x_{k}\right)\right)$
A problem with statement $\mathcal{C}(\mathcal{X}, \mathcal{A})$ where \mathcal{X} are the unknowns and \mathcal{A} the parameters, is put under the form: Prove that: $\operatorname{known}(\mathcal{A}) \wedge \mathcal{C}(\mathcal{X}, \mathcal{A}) \supset \operatorname{known}(\mathcal{X})$

Utility of known

(Meta)-theorem

$$
\left(\bigwedge_{i=1}^{n} \operatorname{known}\left(a_{i}\right) \wedge C(\mathcal{X}, \mathcal{A}) \wedge \delta(\mathcal{X}, \mathcal{A})\right) \supset \bigwedge_{j=1}^{m} \operatorname{known}\left(x_{j}\right)
$$

is a theorem in the considered geometric universe iff there are some terms such that:

$$
C(\mathcal{X}, \mathcal{A}) \supset\left(\delta(\mathcal{X}, \mathcal{A}) \supset \bigvee_{I} x=F_{l}(\mathcal{A})\right)
$$

The first formulation can be used alongside a mechanism to keep book of equalities of terms (just like Prolog's mechanism). The preconditions are used to determine the validity domains $\delta(\mathcal{X}, \mathcal{A})$

A Prolog implementation

Introduction
Problematics
An example
First order logic
Ruler and compass
Formalization of geometry
Signature and Expressiveness
Axiomatic and inferences

Implementation
Different kinds of inference
Permutation, decomposition, exception
Geometric proofs
High level rules

System of axioms

Different "inference" kinds

Axioms of different kinds

- for permutations
- for representation
- for proofs
- for construction
- Unification modulo
- proof of preconditions (guard)
- forward chaining for building a construction program

Problematics

An example

Ruler and compass Formalization of geometry

Low level axioms and control (signature)

Geometric sort: point

- degree of freedom: 2
- basic constructors: interll, intercc, ...
- automatic objects: no
functional symbol: 1pp
- profile: pointpoint \rightarrow line
- decomposability: (is-onl, is-onl)
- equivalents: no
- preconditions: except (lpp(A,B), A eg B)
predicative symbol: iso
- profile: point point point
- equivalents: iso(A,B,C) equiv iso(A,C,B)

Unification

Unification modulo permutations
Example: Using rule mid (A, B) equiv mid (B, A), the unification $\operatorname{mid}(\mathrm{X}, \mathrm{Y})=\operatorname{mid}(\mathrm{a}, \mathrm{b})$ gives two unifiers:
$X=a \wedge Y=b$ and $X=b \wedge Y=a$.
Unification modulo incidence relation Example: if points $A_{1}, A_{2}, A_{3}, A_{4}$ are on line L, then L can be unified with, for instance, term $\operatorname{lpp}\left(A_{4}, A_{2}\right)$ (use of basic constructors and decomposability notions).

Geometric proofs (1)

Geometric reasoning

Example : iso $(\mathrm{A}, \mathrm{B}, \mathrm{C}) \supset \operatorname{dist}(\mathrm{A}, \mathrm{B})=\operatorname{dist}(\mathrm{A}, \mathrm{C})$
$\supset A$ is-onl bis(B, C)
$\supset A$ is-onl lortho(B,C,mid(B,C)) ...

First order logic
Ruler and compass
Formalization of geometry

Geometric proofs (2)

Proof and disjunction
When the solver has to apply a rule corresponding to the axiom:
X is-onl $Z \wedge Y$ is-onl $Z \wedge X \neq Y \supset Z=\operatorname{lpp}(X, Y)$
It has to prove that either $X=Y$ or $X \neq Y$. A small rule-based prover is used with rules dealing with dis-equalities like this one: iso $(A, B, C) \supset B \neq C$. If it is able to prove

- $X=Y$, then the rule is not applied, but the information $X=Y$ is now usable,
- $X \neq Y$ then the rule is applied (and the dis-equality is put into a database).
If it cannot prove one of these two cases, both are taken into account and a "if then else" structure is used in the program to be built.

Standard rules (high level axioms)

Pascal Schreck

Example of a no-constructive rule

$$
\begin{aligned}
& \text { if }[\text { iso }(A, B, C)] \text { then } \\
& \text { dist }(A, B) \text { ' }=1={ }^{\prime} \text { dist }(A, C)
\end{aligned}
$$

Example of a constructive rule

```
if [dist(A,B) '=l=' K] and
    [known A, known K, unknown B]
then [B is-onc ccr(A,K)].
```

The pseudo-logical unkown predicate is used to control the application of constructive rules.

Disjunctive rules

Example, the bissector rule:

$$
\begin{aligned}
& \text { if }[\operatorname{did}(A, D 1) \text { ' }=1=\text { ' } \operatorname{did}(A, D 2)] \\
& \text { and }
\end{aligned}
$$

[differents [D1,D2], known D1, known D2, unknown A] then

```
either [dird(D1) diff dird(D2)]
                                and [ A is_onl bis(D1,D2) : 1]
```

 or
 either [dird(D1) eg dird(D2), D1 diff D2]
and [A is_onl dmd(D1,D2) : 1]
or
either [D1 eg D2] and [].

Problematics

Ruler and compass
Formalization of
geometry
Signature and
Expressiveness
Axiomatic and inferences

Different kinds of inference
Permutation, decomposition exception
Geometric proofs
High level rules

Use of a disjunctive rule

A dedicated prover tries to prove that one of the sub-conditions is true (for instance D1 and D2 are parallel) if it succeeds then the rule is applied with the corresponding conclusion
If not, an "if ...then...else" or a "switch ... case" structure is inserted in the program construction and all the cases are examinated.

Conclusion

Хвала на пажњи

