E-Matching with Free Variables

Philipp Rimmer
Uppsala University
Sweden

FATPA Workshop Belgrade
February 3rd 2012

1/25

Context: reasoning in first-order logic (FOL)

First-order provers

SMT solvers

Resolution, superposition,
tableaux, efc.

(Free) variables, unification

Complete for FOL

DPLL(T), Nelson-Oppen

E-matching, heuristics

Complete on ground
fragment

Many built-in theories

Great for algebra, not so
much for verification

Fast, but incomplete on
quantified problems

How about putting things together?

This is possible. Here:

KE-tableau/DPLL FOL
Theory procedures Arithmetic
E-matching Axiomatisation of theories

Free variables + constraints Quantifiers

Interesting completeness results
Experimental implementation: PRINCESS

In some domains:
Performance comparable to SMT solvers

Some features that are rather unique

How about putting things together?

This is possible. Here:

KE-tableau/DPLL FOL
Theory procedures Arithmetic
E-matching Axiomatisation of theories

Free variables + constraints Quantifiers

Interesting completeness results
Experimental implementation: PRINCESS

In some domains:
Performance comparable to SMT solvers

Some features that are rather unique

@ The base logic + calculus:
Linear integer arithmetic + uninterpreted predicates

@ Positive Unit Hyper-Resolution (PUHR)

@ Uninterpreted functions:
Encoding + Axioms

@ E-matching

@ Experimental results

More details: paper at LPAR 2012

The base logic [LPAR’08]

Linear integer arithmetic + uninterpreted predicates:

t = a|X|C|at+---+at

¢ = NP |OV| 0| Vxe|Ixg
|t=0|t>0|t<0|a|t|p(t,....1)

. terms

. formulae

. variables

. constants

. uninterpreted predicates (fixed arity)
. integer literals (Z)

R T O X ©& ~

The base logic [LPAR’08]

Linear integer arithmetic + uninterpreted predicates:

t = a|X|C|at+---+at

¢ = NP |OV| 0| Vxe|Ixg
|t=0|t>0|t<0|a|t|p(t,....1)

@ No functions! (more later)
@ Subsumes FOL and Presburger arithmetic (PA)
@ Valid formulae are not enumerable [Halpern, 1991]

Example formula: optimisation

\forall int x, vy; (

p(x, y) <—> (2%x + y <= 18 &
2xx + 3xy <= 42 &
3xx + y <= 24 &

x > 0 & y >= 0)
)
->
\exists int x, vy; (

p(x, y) &

\forall int x2, y2; (

P (x2, y2) => 3xx + 2%y >= 3%x2 + 2xy2)

Abstract calculus

Input formula (with preds.): ¢

Abstract calculus

Input formula (with preds.): 10)
i)

Compute PA approximation: Cy

Abstract calculus

Input formula (with preds.): ¢

fr

Compute PA approximation: Cy

Cpisvalid — ¢ is valid

Abstract calculus

Input formula (with preds.): 10)
i)

Compute PA approximation: Cy

Co is invalid ... refine approximation

Abstract calculus

Input formula (with preds.): 10)
RN
Compute PA approximation: Cy = C4

Co is invalid ... refine approximation

Abstract calculus

Input formula (with preds.): 10)
RN
Compute PA approximation: Cy = C; = Co ---

Co is invalid ... refine approximation

Abstract calculus

Input formula (with preds.): 10)
RN
Compute PA approximation: Cy = C; = Co ---

Co is invalid ... refine approximation

Any C;isvalid — ¢ is valid

Approximation? Constrained sequents!

Notation used here:

r-A JcC
——

Antecedent, Succedent Constraint/approximation
(sets of formulae) (formula)

Definition
= A | Cis validif the formula C — AT — \/ A is valid.

lterative proof construction

A2

lterative proof construction

analytic reasoning
about input formula

A2

lterative proof construction

analytic reasoning T

about input formula My F Ay 47

TEA|?

lterative proof construction

analytic reasoning T M As |7
about input formula My F Ay 7

TEA |7

lterative proof construction

M3 H Az |7
analytic reasoning T M As |7
about input formula My F Ay 7

TEA|?

lterative proof construction

*

M3 H Az |7
analytic reasoning T M As |7
about input formula My F Ay 7

TEA|?

lterative proof construction

*

M3 F Az 7

analytic reasoning T M As |7 J propagation
about input formula My F Ay 7 of constraints

TEA|?

lterative proof construction

*

N3 - Az | Gy

analytic reasoning T M As |7 J propagation
about input formula My F Ay 7 of constraints

TEA|?

lterative proof construction

*

M3 F Az | Cq
analytic reasoning T M = As || G J propagation
about input formula My F Ay 7 of constraints

TEA|?

lterative proof construction

*

M3 F Az | Cq
analytic reasoning T M = As || G J propagation
about input formula M = Ay §Cs of constraints

TEA|?

lterative proof construction

*

M3 F Az | Cq
analytic reasoning T M = As || G J propagation
about input formula M = Ay §Cs of constraints

rFAJlC

lterative proof construction

*

M3 F Az | Cq
analytic reasoning T M = As || G J propagation
about input formula M = Ay §Cs of constraints

rFAJlC

@ Constraints are simplified during propagation

o If Cisvalid, thensoisT - A

o If C is satisfiable, it describes a solution forI' = A
@ If C is unsatisfiable, expand the proof tree further . ..

A few proof rules

Fre¢,ALC T F,ALD
FT'r gAY, A L CAD

AND-RIGHT

M [x/clo,Vx.0 = A | [x/c]C
rvx.e - A | 3x.C

ALL-LEFT

(cis fresh)

PRED-UNIFY

%
CLOSE
ra¢17"'7¢n F wh"'awmaA iiﬂ¢1\/\/_‘¢n\/¢1\/\/wm

(selected formulae are predicate-free)

10/25

Correctness

Lemma (Soundness)
It's sound!

Lemma (Completeness)
Complete for fragments:
@ FOL
PA
Purely existential formulae

°
°
@ Purely universal formulae
°

Universal formulae with finite parametrisation
(same as ME(LIA))

11/25

Practicality

12/25

Practicality

So far: quantifier instantiation is always delayed:

:P(8) k P(D), f: b PRED-UNIFY
,p(8) + p(t),

I V O F A

xjelé, vx.¢ ALL-LEFT

MVx.¢ - A

12/25

Practicality

So far: quantifier instantiation is always delayed:

:P(8) k P(D), f: b PRED-UNIFY
,p(8) + p(t),

I V O F A

xjelé, vx.¢ ALL-LEFT

MVx.¢ - A

This corresponds to . ..
@ Free variables + Unification
@ Standard approach in FOL provers

12/25

Alternative: E-Matching, standard in SMT solvers

Matching of triggers (modulo equations):

M, vx.o[tix]], [x/8]o[tX]] + ¢[t[8]], A
M Vx.o[tx]] F ¢[t[8], A

13/25

Alternative: E-Matching, standard in SMT solvers

Matching of triggers (modulo equations):

M, vx.o[tix]], [x/8]o[tX]] + ¢[t[8]], A
M Vx.o[tx]] F ¢[t[8], A

\forall int a, 1, v;
select (store(a, i, v), 1) = v

\forall int a, 1il, 12, v;

(11 !'= i2 —>
select (store(a, il, wv), 1i2) = select(a, 12))

13/25

Alternative: E-Matching, standard in SMT solvers

Matching of triggers (modulo equations):

M, vx.o[tix]], [x/8]o[tX]] + ¢[t[8]], A
M Vx.o[tx]] F ¢[t[8], A

\forall int a, 1, v;
select (store(a, i, v), 1) = v

\forall int a, 1il, 12, v;

(11 !'= i2 —>
select (store(a, il, wv), 1i2) = select(a, 12))

13/25

Comparison

E-Matching

Free variables + unification

Heuristic — incomplete
Good for “simple” instances

User guidance possible
— Triggers

Quite fast
— Only ground formulae

Systematic

Can find “difficult” instances

Quite expensive
— Very nondeterministic

14/25

Comparison

E-Matching

Free variables + unification

Heuristic — incomplete
Good for “simple” instances

User guidance possible
— Triggers

Quite fast
— Only ground formulae

Combination?

Systematic

Can find “difficult” instances

Quite expensive
— Very nondeterministic

14/25

Comparison

E-Matching Free variables + unification

Heuristic — incomplete Systematic
Good for “simple” instances Can find “difficult” instances

User guidance possible

— Triggers

Quite fast Quite expensive

— Only ground formulae — Very nondeterministic
Combination!

@ For predicates:
Positive unit hyper-resolution (PUHR)

@ Lifted to functions using encoding

14/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:

@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

vx.p(x),Vx.(p(x) = q(x) V r(x + 1)),Vx.-r(x) + q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

vx.p(x),Vx.(p(x) = q(x) V r(x + 1)),Vx.-r(x) + q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x + 1)),Vx.-r(x) + q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

gX)vr(X+1) +
L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x + 1)),Vx.-r(x) F q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

qg(X) F r(X+1) F
gX)vr(X+1) +
L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x +1)),Vx.-r(x) F q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution
@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

qg(X) F r(X+1) F
gX)vr(X+1) +
L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x + 1)),Vx.~r(x) F q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution

@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

false +
qg(X) F r(X+1) F
gX)vr(X+1) +
L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x +1)),Vx.-r(x) F q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution

@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

false +
q(X) + r(X+1) F
gX)vr(X+1) +
L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x + 1)),Vx.-r(x) F q(a)

15/25

Positive Unit Hyper-Resolution [Manthey, Bry]

Directed instantiation of formulae:
@ Formulae with negative literals:
= Discharge with unit resolution

@ Formulae without negative literals:
= Instantiate with free variables
(or: enumerate ground terms)

* false +
gX) - I X=a r(X+1) F
gX)vr(X+1) +
L p(X) F
vx.p(x),Vx.(p(x) = q(x) V r(x +1)),Vx.-r(x) F q(a)

15/25

PUHR in our calculus

Theorem (Completeness)

Suppose ' = A |} C is provable in the calculus without PUHR,
where C is valid. Then there is a valid constraint C' so that the
calculus with PUHR can provel = A | C'.

In PRINCESS:

@ PUHR normally yields drastic speed-up
@ (but not always)

16/25

Lifting to functions

17/25

Lifting to functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~ fh(x,¢) A gp(c,a,d)

17/25

Lifting to functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~ fh(x,¢) A gp(c,a,d)

@ Axioms necessary: Totality + Functionality

vX.3y. (X, y)
VX, Y1, Yo. (fo(X, 1) = fo(X, ¥2) = ¥1 = Vo)

17/25

Lifting to functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~ fh(x,¢) A gp(c,a,d)

@ Axioms necessary: Totality + Functionality

vx.3y. fo(X,)
VX, Y1, Yo (To(X, y1) = fo(X, ¥2) = y1 = ¥2)

@ Very closely resembles congruence closure

17/25

E-Matching through PUHR

Two ways to encode function applications:

QU] ~ Vy.(=h(t,y) Vv ¢ly]) (negative)
~ 3y.(h(ty) Aoly]) (positive)

18/25

E-Matching through PUHR

Two ways to encode function applications:

QU] ~ Vy.(=h(t,y) Vv ¢ly]) (negative)
~ 3y.(h(ty) Aoly]) (positive)

= Useful: PUHR only matches on negative literals

18/25

E-Matching through PUHR

Two ways to encode function applications:

QU] ~ Vy.(=h(t,y) Vv ¢ly]) (negative)
~ 3y.(h(ty) Aoly]) (positive)

= Useful: PUHR only matches on negative literals

vX.¢[t[X]]

negative encoding positive encoding
for trigger t[x] for other functions

18/25

vx. f(x) >0

If f(x) is trigger: If f(x) is not trigger:
VX, y. (—fo(x,y) VYy > 0) vx.3y. (f(x,y) Ay >0)

19/25

The highlight: relative completeness

In SMT solvers:
@ Choice of triggers determines provability
@ Bad triggers — bad luck

In the PUHR calculus:
@ Choice of triggers determines performance
@ Regardless of triggers, the same formulae are provable

@ E-matching is complemented by
free variables + unification

20/25

Where are we? Experimental evaluation

AUFLIA+p (193) AUFLIA-p (193)

Z3 191 191
PRINCESS 145 137
CVC3 132 128

@ Implementation of our calculus in PRINCESS
@ Unsatisfiable AUFLIA benchmarks from SMT-comp 2011

@ Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
@ http://www.philipp.ruemmer.org/princess.shtml

21/25

http://www.philipp.ruemmer.org/princess.shtml

Conclusion

@ E-Matching = Relational function encoding + PUHR

@ Overall goal:
Tools that provide the performance of SMT solvers,
but completeness as common in FOL provers

@ Presented work is one step on this way

There is more to say, e.g.:
@ Connection to constraint programming
@ Theory of arrays, sets
@ Handling of bit-vectors
@ Craig interpolation

22/25

Thanks for your attention!

23/25

Related work

@ ME(LIA): model evolution modulo linear integer arithmetic,
[Baumgartner, Tinelli, Fuchs, 08]

@ SPASS+T [Prevosto, Waldmann, ESCoR’06]
@ DPLL(SP) [de Moura, Bjgrner, IJCAR’08]

@ Various approaches to integrate theories in saturation
calculi, e.g. [Stickel, JAR’85], [Burchert, CADE’90],
[Korovin, Voronkov, CSL07]

@ Constraint logic programming
@ Various SMT solvers

24/25

Open PhD Position at Uppsala University

I’'m looking to hire a PhD student:

@ Subject areas:
SMT, floating-point arithmetic, Craig interpolation;
Application in embedded systems analysis

@ Contact me for more information
@ Pass on to students that might be interested

25/25

