Automated Solving of Triangle Construction Problems - ongoing work -

Vesna Marinković Predrag Janičić
Faculty of Mathematics, University of Belgrade, Serbia

Fifth Workshop on Formal and Automated Theorem Proving and Applications
Belgrade, February 3-4, 2012.

Constructions with Straightedge and Compass

- Goal: construct a triangle that meets given constraints
- Widely studied on all education levels
- Main obstacle: combinatorial explosion - huge search space:
- many different construction steps
- plenty of objects that each step could be applied to
- The construction has to be accompanied by a proof that it meets the given specification

Constructions with Straightedge and Compass
Our Approach
Discussion Future Work

Constructions with Straightedge and Compass

Example Problem

Problem Solution
Existing Approaches
Wernick's Problems

Example Problem

Problem: Construct a triangle $A B C$ given vertices A and B and the barycenter G

Problem Solution

Solution: Construct the midpoint M_{c} of the segment $A B$; then construct the vertex C such that $M_{c} G: M_{c} C=1 / 3$

Existing Approaches

- Just a couple of existing approaches, including:
- Gao and Chou (1998)
- Schreck (2001)
- Gulwani et.al (2011)

Wernick's Problems

- Created in 1982, some variants in the meanwhile
- Task: construct a triangle given three located points selected from the following list:
- A, B, C - vertices
- I, O - incenter and circumcenter
- H, G - orthocenter and barycenter
- M_{a}, M_{b}, M_{c} - the side midpoints
- H_{a}, H_{b}, H_{c} - feet of vertices on the opposite sides
- T_{a}, T_{b}, T_{c} - intersections of the internal angles bisectors with the opposite sides

Wernick's Problems (2)

139 non-trivial, significantly different, problems; 25 redundant (R) or locus-restricted (L); some solvable (S), some unsolvable (U); 15 still with unknown status

	57. $A, H, I \quad \mathrm{~S}[9]$	85. $M_{a}, M_{b}, H_{a} \mathrm{~S}$	113. M_{a}, T_{b}, T_{c}	
	$\left.1, A, T_{a}, T_{b} \quad \mathrm{~S} \quad 9\right]$	86. $M_{a}, M_{b}, H_{c} \mathrm{~S}$	114. $M_{a}, T_{b}, I \quad \mathrm{U}[9]$	
	$1 T_{a}, I \quad \mathrm{~L}$	87. M_{a}, M_{b}, H S [9]	115. G, H_{a}, H_{b} U [9]	
A, B_{1}, M_{a}	$T_{b}, T_{c} \quad \mathrm{~S}$	88. M_{a}, M_{b}, T_{a} U [9]	116. $G, H_{a}, H \quad \mathrm{~S}$	
	$I \quad \mathrm{~S}$	89. M_{a}, M_{b}, T_{c} U [9]	117. $G, H_{a}, T_{a} \quad \mathrm{~S}$	
$A, \quad B, \quad H_{C}$	M_{b} S	90. $M_{a}, M_{b}, I \quad \mathrm{U}[10]$	118. G, H_{a}, T_{b}	
	G S	91. $M_{a}, G, H_{a} \mathrm{~L}$	119. G, Ha, I	
	$\psi_{a} \quad \mathrm{~L}$	92. M_{a}, G, H_{b} S	120. G, H, Ta U [9]	
A, E	$\bigcirc \mathrm{S}$	93. $M_{0}, G, H \quad \mathrm{~S}$	121. $G, H, I \quad \mathrm{U}[9]$	
	S	94. $M_{a}, G, T_{a} \mathrm{~S}$	122. G, T_{a}, T_{b}	
	L	95. $M_{a}, G, T_{b} \cup[9]$	123. G, T_{a}, I	
A, B_{1}, F_{Q}	U [9]	96. $M_{a}, G, I \quad \mathrm{~S}[9]$	124. $H_{a}, H_{b}, H_{c} \mathrm{~S}$	
	d S	97. $M_{a}, H_{a}, H_{b} \mathrm{~S}$	125. H_{a}, H_{b}, H S	
	S	98. $M_{a}, H_{a}, H \quad \mathrm{~L}$	126. $H_{a}, H_{b}, T_{a} \mathrm{~S}$	
	R	99. M_{a}, H_{a}, T_{a} L	127. $H_{a}, H_{\mathrm{b}}, T_{c}$	
	U [9]	100. M_{a}, H_{a}, T_{b} U [9]	128. H_{a}, H_{b}, I	
A, E, F	U 99	101. $M_{a}, H_{a}, I \quad \mathrm{~S}$	129. $H_{a}, H, T_{a} \mathrm{~L}$	
	H_{b} U 9	102. $M_{c}, H_{b}, H_{c} \mathrm{~L}$	130. H_{a}, H, T_{b} U [9]	
	, H S	103. $M_{a}, H_{b}, H \quad \mathrm{~S}$	131. $H_{a}, H, I \quad \mathrm{~S}[9]$	
A, B, Γ_{a}	$H_{a}, T_{a} \quad \mathrm{~S}$	104. $M_{a}, H_{b}, T_{a} \mathrm{~S}$	132. H_{a}, T_{a}, T_{b}	
	H_{c}, T_{b}	105. $M_{a}, H_{b}, T_{b} \mathrm{~S}$	133. $H_{a}, T_{a}, I \quad \mathrm{~S}$	
	$\xrightarrow{\sim} H_{a}, I$	106. M_{a}, H_{b}, T_{c} U [9]	134. H_{a}, T_{b}, T_{c}	
$\frac{9}{25 .} A, \quad B, \quad T_{C}$	F. $O, H_{\mathrm{s}} T_{a} \quad \mathrm{U}[9]$	107. $M_{a}, H_{b}, I \quad$ U [9]	135. H_{a}, T_{b}, I	
	80. O, H, I \quad U [9]	108. M_{a}, H, T_{a} U [9]	136. H, T_{a}, T_{b}	
	81. O, T_{a}, T_{b}	109. M_{a}, H, T_{b} U [10]	137. H, T_{a}, I	
	82. $O, T_{a}, I \quad \mathrm{~S}[9]$	110. $M_{a}, H, I \quad \mathrm{U}[10]$	138. T_{a}, T_{b}, T_{c} U [11]	
27. $A, M_{a}, I \quad \mathrm{~S}$ [9]\|	55. $A, H, T_{a} \quad \mathrm{~S}$	83. $M_{a}, M_{b}, M_{c} \mathrm{~S}$	111. M_{a}, T_{a}, T_{b} U [10]	139. $T_{a}, T_{b}, I \quad \mathrm{~S}$
28. $A, M_{b}, M_{c} \mathrm{~S}$ 年 56. A, H, T_{b} U [9]	84. $M_{a}, M_{b}, G \mathrm{~S}$	112. $M_{a}, T_{a}, I \quad \mathrm{~S}$		

Basic Approach (1)

- Following careful analysis of all solutions
- Constructions consist of high-level construction steps (for example: if barycenter G and circumcenter O are known, then the orthocenter H can be constructed)
- Simple forward chaining mechanism for search procedure
- Points - only basic objects; lines and circles defined as functions of their points
- Implemented in Prolog

Basic Approach (2)

- Around 70 general rules used
- Example: if two triangle vertices are given, then the side bisector can be constructed
- For symmetric predicates, no redundant facts are derived
- Solves 60 examples from Wernick's list, each in less than 1s and with the maximal search depth 9
- But... there are too many rules! (it is not problem to search over them, but to invent them)

Separation of concepts definitions, lemmas, construction steps (1)

Motivating example: Construct the midpoint M_{c} of $A B$ and then construct C such that $M_{c} G: M_{c} C=1: 3$ uses the facts:

- M_{c} is the side midpoint of $A B$
- G is the barycenter of $A B C$
- it holds that $M_{c} G=1 / 3 M_{c} C$
- given points X and Y, it is possible to construct the midpoint of the segment $X Y$
- given points X and Y, it is possible to construct a point Z, such that: $X Y: X Z=1: 3$

Separation of concepts definitions, lemmas, construction steps (2)

Motivating example: Construct the midpoint M_{c} of $A B$ and then construct C such that $M_{c} G: M_{c} C=1: 3$ uses the facts:

- M_{c} is the side midpoint of $A B$ (definition of M_{c})
- G is the barycenter of $A B C$ (definition of G)
- it holds that $M_{c} G=1 / 3 M_{c} C$ (lemma)
- given points X and Y, it is possible to construct the midpoint of the segment $X Y$ (construction primitive)
- given points X and Y, it is possible to construct a point Z, such that: $X Y: X Z=1: 3$ (construction primitive)

Advanced Approach

- Task: Derive high-level (instantiated) construction steps from the set of definitions, lemmas and construction primitives
- From:
- it holds that $M_{c} G=1 / 3 M_{c} C$ (lemma)
- given points X and Y, it is possible to construct a point Z, such that: $X Y: X Z=1: r$ (construction primitive) we can derive:
- given M_{c} and G, it is possible to construct C

Rule derivation

- Limit instantiations of definitions/lemmas
- So far, half of the rules of the basic system are derived from:
- around 15 definitions (including Wernick's notation)
- around 10 lemmas
- only 2 suitable construction primitives
- Deriving rules is performed once, in preprocessing phase (takes approx. 20s)

Discussion

- Objection: the approach is problem-tailored!
- Answer: no system can invent all needed lemmas, so other systems are too problem-tailored
- Objection: how can the approach be used for other families of problems?
- Answer: in analogy with this family (the knowledge may overlap partly)
- Objection: ...then, it might become inefficient?
- Answer: It could automatically choose over domains

Future Work

- Complete the process of automated deriving of rules
- Automated generation of constructions and figures in GCLC (along with a construction description in ${ }^{A} T_{E X}$)
- Proving (in GCLC) that the constructions meet specifications, using automated theorem provers
- Proving (in coherent logic, by ArgoCLP prover) that constructed points indeed exist (under some conditions)

