Automated Solving of Triangle Construction Problems — ongoing work —

Vesna Marinković Predrag Janičić Faculty of Mathematics, University of Belgrade, Serbia

Fifth Workshop on Formal and Automated Theorem Proving and Applications Belgrade, February 3-4, 2012.

(日) (同) (E) (E) (E)

Constructions with Straightedge and Compass Example Problem Problem Solution Existing Approaches Wernick's Problems

Constructions with Straightedge and Compass

- Goal: construct a triangle that meets given constraints
- Widely studied on all education levels
- Main obstacle: combinatorial explosion huge search space:
 - many different construction steps
 - plenty of objects that each step could be applied to
- The construction has to be accompanied by a proof that it meets the given specification

・ロン ・回 と ・ ヨ と ・ ヨ と

Example Problem

å

Constructions with Straightedge and Compass Example Problem Problem Solution Existing Approaches Wernick's Problems

 $\overset{\circ}{B}$

(日) (同) (E) (E) (E)

G∘

Problem: Construct a triangle ABC given vertices A and B and the barycenter G

Constructions with Straightedge and Compass Example Problem Problem Solution Existing Approaches Wernick's Problems

Problem Solution

Solution: Construct the midpoint M_c of the segment AB; then construct the vertex C such that $M_cG : M_cC = 1/3$

イロン スポン イヨン イヨン

Constructions with Straightedge and Compass Example Problem Problem Solution Existing Approaches Wernick's Problems

Existing Approaches

• Just a couple of existing approaches, including:

- Gao and Chou (1998)
- Schreck (2001)
- Gulwani et.al (2011)

(日) (同) (E) (E) (E)

Constructions with Straightedge and Compass Example Problem Problem Solution Existing Approaches Wernick's Problems

Wernick's Problems

- Created in 1982, some variants in the meanwhile
- Task: construct a triangle given three located points selected from the following list:
 - A, B, C vertices
 - I, O incenter and circumcenter
 - H, G orthocenter and barycenter
 - M_a , M_b , M_c the side midpoints
 - H_a , H_b , H_c feet of vertices on the opposite sides
 - T_a , T_b , T_c intersections of the internal angles bisectors with the opposite sides

Constructions with Straightedge and Compass Example Problem Problem Solution Existing Approaches Wernick's Problems

Wernick's Problems (2)

139 non-trivial, significantly different, problems; 25 redundant (R) or locus-restricted (L); some solvable (S), some unsolvable (U); 15 still with unknown status

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.	A, B, O	A, T_a, T_b	S 9	86. Ma, Mb, Hc S	114. M _a , T _b , I U [9]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.	A, B, M_a	$\mathbf{S}^{\frac{T_a, T}{T_b, T_c}}$	S S	88. M_a , M_b , T_a U 9 89. M_a , M_b , T_c U 9	116. G, H_a, H S 117. G, H_a, T_a S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			R G	S	91. M _a , G, H _a L	119. G, H _a , I
5. A, B, H _a L 5. A, B, H _a L 6. A, B, H _c L 6. A, B, H _c L 7. A, B, H 8. A, B, T _a S 8. A, B, T _a S 8. A, B, T _a S 9. H_{a} L 9. H_{a} C 10. H_{a}	4.	A, B, G		S S	93. M_a, G, H S 94. M_a, G, T_a S	121. G, H, I U [9] 122. G, T_a, T_b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			L	U [9] S	96. M_a , G , I S [9] 97. M_a , H_a , H_b S	124. H_a , H_b , H_c S 125. H_a , H_b , H S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/ /	L	R	99. M _a , H _a , T _a L	127. H_a , H_b , T_c
8. A, B, T_a S $\frac{T_a \cdot s}{H_a, T_b}$ $\frac{104}{100}$ $\frac{M_a}{M_a}$ $\frac{H_b}{T_b}$ $\frac{T_a}{T_b}$ $\frac{S}{T_b}$ $\frac{102}{M_a}$ $\frac{H_a}{T_b}$ $\frac{T_a}{T_b}$ $T_$	7.	A. B. H	S Ho	U 9 U 9	101. M_a , H_a , $I = S$ 102. M_a , H_b , $H_c = L$	129. H_a , H , T_a L 130. H_a , H , T_b U [9]
			\mathbf{S} $\frac{T_a, T_a}{H_a, T_b}$	S	104. M_a , H_b , T_a S 105. M_a , H_b , T_b S	132. H_a , T_a , T_b 133. H_a , T_a , I S
$[30. 0, H, I] = 0$ [9] $[108. M_a, H, I_a] = 0$ [9] $[136. H, I_a, I_b]$	9.	A, B, T_c	$D. O, H, T_a$ 0. O, H, I	U [9] U [9]	107. M_a , H_b , $I = U = 9$ 108. M_a , H , $T_a = U = 9$	135. H_a , T_b , I 136. H , T_a , T_b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26. A, M 27. A, M	Ia, I S [9] 55. A, H, Ta		S [9] S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	138. T _a , T _b , T _c U [11]

Basic Approach Separation of concepts – definitions, lemmas, construction steps Advanced Approach

Basic Approach (1)

- Following careful analysis of all solutions
- Constructions consist of high-level construction steps (for example: *if barycenter G and circumcenter O are known, then the orthocenter H can be constructed*)
- Simple forward chaining mechanism for search procedure
- Points only basic objects; lines and circles defined as functions of their points
- Implemented in Prolog

Basic Approach Separation of concepts – definitions, lemmas, construction steps Advanced Approach

Basic Approach (2)

- Around 70 general rules used
- Example: *if two triangle vertices are given, then the side bisector can be constructed*
- For symmetric predicates, no redundant facts are derived
- Solves 60 examples from Wernick's list, each in less than 1s and with the maximal search depth 9
- But... there are too many rules! (it is not problem to search over them, but to invent them)

Basic Approach Separation of concepts – definitions, lemmas, construction steps Advanced Approach

Separation of concepts – definitions, lemmas, construction steps (1)

Motivating example: Construct the midpoint M_c of AB and then construct C such that $M_cG: M_cC = 1:3$ uses the facts:

- *M_c* is the side midpoint of *AB*
- G is the barycenter of ABC
- it holds that $M_c G = 1/3M_c C$
- given points X and Y, it is possible to construct the midpoint of the segment XY
- given points X and Y, it is possible to construct a point Z, such that: XY : XZ = 1 : 3

Basic Approach Separation of concepts – definitions, lemmas, construction steps Advanced Approach

Separation of concepts – definitions, lemmas, construction steps (2)

Motivating example: Construct the midpoint M_c of AB and then construct C such that $M_cG : M_cC = 1 : 3$ uses the facts:

- M_c is the side midpoint of AB (definition of M_c)
- G is the barycenter of ABC (definition of G)
- it holds that $M_c G = 1/3M_c C$ (lemma)
- given points X and Y, it is possible to construct the midpoint of the segment XY (construction primitive)
- given points X and Y, it is possible to construct a point Z, such that: XY : XZ = 1 : 3 (construction primitive)

Basic Approach Separation of concepts – definitions, lemmas, construction steps Advanced Approach

Advanced Approach

- Task: Derive high-level (instantiated) construction steps from the set of definitions, lemmas and construction primitives
- From:
 - it holds that $M_cG = 1/3M_cC$ (lemma)
 - given points X and Y, it is possible to construct a point Z, such that: XY : XZ = 1 : r (construction primitive)

we can derive:

• given M_c and G, it is possible to construct C

Basic Approach Separation of concepts – definitions, lemmas, construction steps Advanced Approach

Rule derivation

- Limit instantiations of definitions/lemmas
- So far, half of the rules of the basic system are derived from:
 - around 15 definitions (including Wernick's notation)
 - around 10 lemmas
 - only 2 suitable construction primitives
- Deriving rules is performed once, in preprocessing phase (takes approx. 20s)

- Objection: the approach is problem-tailored!
 - Answer: no system can invent all needed lemmas, so other systems are too problem-tailored
- Objection: how can the approach be used for other families of problems?
 - Answer: in analogy with this family (the knowledge may overlap partly)
- Objection: ...then, it might become inefficient?
 - Answer: It could automatically choose over domains

(日) (同) (E) (E) (E)

Future Work

- Complete the process of automated deriving of rules
- Automated generation of constructions and figures in GCLC (along with a construction description in LATEX)
- Proving (in GCLC) that the constructions meet specifications, using automated theorem provers
- Proving (in coherent logic, by ArgoCLP prover) that constructed points indeed exist (under some conditions)