SMTCoq: skeptical cooperation between SAT/SMT solvers and Coq

Michaël Armand Germain Faure Benjamin Grégoire

<u>Chantal Keller</u> Laurent Théry Benjamin Werner

INRIA – École Polytechnique

March, 30th 2013

Motivation (1/2)

Focus on certificates

COQ

AUTOMATIC THEOREM PROVER

COQ

AUTOMATIC THEOREM PROVER

Motivation (1/2)

AUTOMATIC THEOREM PROVER

AUTOMATION

AUTOMATIC THEOREM PROVER

AUTOMATION

SAFETY

Can be used:

- to certify SMT results
- as Coq tactics
- in larger developments (eg. DP using bit-blasting)

Outline

- Focus on certificates
- 2 Focus on the Cog checker
- 3 Cog tactics
- Related works
- 5 Conclusion

SAT case

Focus on certificates

Decide propositional satisfiability of sets of clauses:

- $\blacksquare x \lor y \qquad x \lor \overline{y} \lor z \qquad \overline{x} \lor z \qquad \overline{z}$

Certificate:

- lacksquare If satisfiable: assignment of the variables to $oxed{\top}$ or $oxed{\bot}$
- If unsatisfiable: proof by resolution of the empty clause

Resolution rule:

$$\frac{x \vee C \qquad \bar{x} \vee D}{C \vee D}$$

Satisfiability of:
$$x \lor y$$
 $x \lor \bar{y} \lor z$ $\bar{x} \lor z$

$$\{x \mapsto \top, y \mapsto \bot, z \mapsto \top\}$$

Unsatisfiability of:
$$x \lor y$$
 $x \lor \bar{y} \lor z$ $\bar{x} \lor z$ \bar{z}

Satisfiability of:
$$x \lor y \qquad x \lor \bar{y} \lor z \qquad \bar{x} \lor z$$

$$\{x \mapsto \top, y \mapsto \bot, z \mapsto \top\}$$

Unsatisfiability of:
$$x \lor y$$
 $x \lor \bar{y} \lor z$ $\bar{x} \lor z$ \bar{z}

$$\begin{array}{cccc}
 & x \lor \overline{y} \lor z & \overline{z} \\
 & x \lor \overline{y} & \overline{x} \lor z & \overline{z} \\
 & x & \overline{x} & \overline{x}
\end{array}$$

Focus on certificates

Satisfiability of:
$$x \lor y$$
 $x \lor \bar{y} \lor z$ $\bar{x} \lor z$

$$\{x \mapsto \top, y \mapsto \bot, z \mapsto \top\}$$

Unsatisfiability of:
$$x \lor y$$
 $x \lor \bar{y} \lor z$ $\bar{x} \lor z$ \bar{z}

$$\begin{array}{cccc}
 & & \frac{x \vee \overline{y} \vee z & \overline{z}}{x \vee \overline{y}} \\
 & & & \overline{x} \vee z & \overline{z} \\
 & & & \overline{x}
\end{array}$$

Resolution chain

SAT modulo Theories

Atoms are now formulas of some theories:

- congruence closure
- linear arithmetic
-

Certificate:

- If satisfiable: assignment of the variables
- If unsatisfiable: proof by resolution of the empty clause in which some leaves are theory lemmas

Focus on certificates

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$

$$\{x \mapsto f(a), y \mapsto a, z \mapsto a\}$$

Unsatisfiability of:

$$f(x) \neq f(y)$$

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$

$$x = y$$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) \neq f(y)$$

00 SMT

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$

$$\{x \mapsto f(a), y \mapsto a, z \mapsto a\}$$

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$

$$f(x) \neq f(y)$$

$$f(x) = f(f(z))$$

$$x = y$$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) = f(y) \qquad f(x) \neq f(y)$$

00 SMT

Focus on certificates

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$

$$\{x \mapsto f(a), y \mapsto a, z \mapsto a\}$$

Unsatisfiability of:

$$f(x) \neq f(y)$$

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$

$$x = y$$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) = f(y) \qquad f(x) \neq f(y)$$

Outline

- 1 Focus on certificates
- 2 Focus on the Cog checker
- 3 Cog tactics
- 4 Related works
- 5 Conclusion

A modular checker based on computational reflection

A modular checker based on computational reflection

The small checkers and the main checker

A small checker:

- takes some clauses and a piece of certificate as arguments
- returns a clause that is implied

The main checker:

- maintains an array of clauses
- sequentially shares out each certificate step between the corresponding small checker
- checks that the last obtained clause is the empty clause

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) = f(y) \qquad f(x) \neq f(y)$$

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) = f(y) \qquad \qquad f(x) \neq f(y)$$

The Coq checker

Focus on certificates

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

$$f(x) \neq f(y)$$

$$f(x) = f(f(z))$$

$$x = y$$

$$x = y$$

$$f(x) \neq f(y)$$

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

$$f(x) \neq f(y)$$

$$f(x) = f(f(z))$$

$$x = y$$

$$\frac{x=y}{f(x)\neq f(y)}$$

$$f(x) \neq f(y) \qquad f(x) = f(f(z))$$

$$x = y$$

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$\frac{}{x \neq y \lor f(x) = f(y)}$$
 $x = y$ $f(x) \neq f(y)$

The Coq checker

Focus on certificates

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$\frac{}{x \neq y \lor f(x) = f(y)}$$
 $x = y$ $f(x) \neq f(y)$

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

$$f(x) \neq f(y) \qquad f(x) = f(f(z))$$

$$x = y \qquad x \neq y \lor f(x) = f(y)$$

The Coq checker

Focus on certificates

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

$$f(x) \neq f(y) \qquad f(x) = f(f(z)) \qquad \Box$$

$$x = y \qquad x \neq y \lor f(x) = f(y)$$

The main checker by example

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) = f(y) \qquad \qquad f(x) \neq f(y)$$

The Coq checker

Focus on certificates

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$\frac{x \neq y \lor f(x) = f(y)}{f(x) = f(y)} \qquad x = y$$
$$f(x) = f(y) \qquad \qquad f(x) \neq f(y)$$

The Coq checker

Focus on certificates

Improvements

$$f(x) \neq f(y)$$

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

$$x = v$$

$$x = y$$

$$f(x) \neq f(y)$$

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

$$\frac{x=y}{f(x)\neq f(y)}$$

$$f(x) \neq f(y) \qquad f(x) = f(f(z)) \qquad x = y$$

The Cog checker

Focus on certificates

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

$$f(x) \neq f(y) \qquad |x \neq y \lor f(x) = f(y)| \qquad x = y$$

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

$$f(x) \neq f(y)$$
 $x \neq y \lor f(x) = f(y)$ $x = y$

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

$$f(x) \neq f(y) \qquad |x \neq y \lor f(x) = f(y)| \qquad x = y$$

The Coq checker

Focus on certificates

Improvements

Unsatisfiability of:
$$f(x) \neq f(y)$$
 $f(x) = f(f(z))$ $x = y$

EUF
$$x \neq y \lor f(x) = f(y)$$
 $x = y$ $f(x) \neq f(y)$

Small checkers

Current small checkers:

- resolution chains
- CNF computation
- Equality of Uninterpreted Functions
- Linear Integer Arithmetic (using an existing Coq decision procedure)
- Simplifications (eg. $x + 0 \rightsquigarrow x$)

Outline

Focus on certificates

- 1 Focus on certificates
- 2 Focus on the Cog checker
- 3 Coq tactics
- 4 Related works
- 5 Conclusion

Motivation

Focus on certificates

Example¹:

```
Goal forall b1 b2 x1 x2,
  (if b1 then 2 * x1 + 1 else 2 * x1) =
   (if b2 then 2 * x2 + 1 else 2 * x2) ->
     b1 = b2 /\ x1 = x2.
Proof.
  verit.
Qed.
```

¹Taken from CompCert.

Proof by reflection

Focus on certificates

ldea

ldea

SMT solver

 $(\forall \vec{x}, F)$ is true

ldea

 $(\forall \vec{x}, F)$ is true $\Leftrightarrow (\exists \vec{x}, \neg F)$ is false

ldea

Cog tactics

Proof by reflection

Focus on certificates

Proof by reflection

Proof by reflection

Focus on certificates

ldea

ldea

Proof by reflection

What's next

Focus on certificates

Work in progress

- \blacksquare accept goals in the sort of propositions (\neq Booleans in Coq)
- normalize the goal

Future directions

- handle quantifiers
- encodings before sending to the SMT

Outline

Focus on certificates

- 1 Focus on certificates
- 2 Focus on the Cog checker
- 3 Cog tactics
- 4 Related works
- 5 Conclusion

Another approach

Since Coq is a programming language:

- implement a SMT solver inside
- prove its correctness
- \hookrightarrow followed by S. Lescuyer et al.: embedding Alt-Ergo in Coq (the ergo tactic)

Pros and cons of ergo

Pros:

- a fully certified prover (not a posteriori)
- which can be extracted
- self-contained

Cons:

- not robust to small changes
- hard
- likely to be less efficient
- does not benefit from existing tools

Proof reconstruction in Isabelle/HOL

Proof witness verification:

- implemented for zChaff and Z3 in Isabelle/HOL by S. Böhme and T. Weber
- integrated in Sledgehammer by J. Blanchette (currently far more powerful than our tactics)

Proof reconstruction in HOL-like proof assistants

Pros and cons of Isabelle/HOL

Pros:

Focus on certificates

- no proof terms
- smaller trusting base

Cons:

- highly dependent on the format of proof witnesses (here Z3)
- no computational reflection
- no extraction

Conclusion

Benchmarks coming from the SMT-comp veriT and Z3 on 2000 benchmarks from SMT-LIB

Outline

Focus on certificates

- 1 Focus on certificates
- 2 Focus on the Cog checker
- 3 Cog tactics
- 4 Related works
- 5 Conclusion

Conclusion

Focus on certificates

SMTCoq:

- efficient a posteriori verification of SMT solvers
 - computational reflection
 - careful choice of term representation
- new decision procedure in Coq
- modular at many levels

Modularity at many levels

Focus on certificates

Small checkers

Integration of new solvers

Advertisement

SMTCoq:

http://www.lix.polytechnique.fr/~keller/Recherche/smtcoq.html

Certificates:

- our format is a proposal to the SAT/SMT community
- seems like a good balance
- do not hesitate to use it, enhance it...

Perspectives:

- many directions already discusses (new solvers, quantifiers, new theories, encoding of more expressive Coq terms, decision procedure on 31bits integers...)
- confront with applications!