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Clones of Incompletely Specified Operations.
ISMVL 2012, pages 256–261.
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What is an IS operation?

What is an IS operation?

Total operation:
OR 0 1
0 0 1
1 1 1

Let
h(x1, x2) = OR(g(x1), x2)

Partial operation:

OR(g(x1),1) undefined if g(x1) is undefined

Incompletely specified operation:

OR(g(x1),1) = 1
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What is an IS operation?

How to define it formaly?

Let A be a finite set and k 6∈ A.
Partial operation:

f : An → A ∪ {k}, k − undefined

Incompletely specified operation:

f : An → A ∪ {k}, k − unspecified

IA - set of all IS operations on A
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IS clones Compositions

Composition of total and hyperoperations

The composition of f ∈ O(n)
A and g1, . . . ,gn ∈ O(m)

A is an m-ary
operation defined by

f (g1, . . . ,gn)(x1, . . . , xm) = f (g1(x1, . . . , xm), . . . ,gn(x1, . . . , xm)).

The composition of f ∈ H(n)
A and g1, . . . ,gn ∈ H(m)

A is an m-ary
hyperoperation defined by

f (g1, . . . ,gn)(x1, . . . , xm) =
⋃

(y1, . . . , yn) ∈ An

yi ∈ gi(x1, . . . , xm)
1 ≤ i ≤ n

f (y1, . . . , yn)
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IS clones Compositions

New composition

Definition

Let f ∈ I(n)A and g1, . . . ,gn ∈ I(m)
A . The i-composition of f and g1, . . . ,gn

is an m-ary IS operation defined by

f [g1, . . . ,gn](x1, . . . , xm) =
∏

(y1, . . . , yn) ∈ An

yi v gi(x1, . . . , xm)
1 ≤ i ≤ n

f (y1, . . . , yn)

where ∏
{xi : 1 ≤ i ≤ l} =

{
x1 , if x1 = x2 = . . . = xl ,
k , otherwise.

v= {(x , x) : x ∈ A ∪ {k}} ∪ {(x , k) : x ∈ A}
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IS clones Compositions

Example

A = {0,1}
composition of partial operations

OR 0 1
0 0 1
1 1 1

g1 g2
0 1 2
1 0 0

⇒
OR(g1,g2)

0 2
1 0

OR(g1, g2)(0) = OR(g1(0), g2(0)) = 2

i-composition of IS operations

OR 0 1
0 0 1
1 1 1

g1 g2
0 1 2
1 0 0

⇒
OR[g1,g2]

0 1
1 0

OR[g1, g2](0) = OR(g1(0), g2(0)) = OR(1, 0) u OR(1, 1) = 1 u 1 = 1
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IS clones Definitions of IS clone

IS clone

en,A
i (x1, . . . , xi , . . . , xn) = xi is an i-th n-ary projection.

Definition
A set C ⊆ IA is called a clone of incompletely specified operations (or
IS clone) if

C contains all projections and
C is closed with respect to i-composition.
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IS clones Definitions of IS clone

IS clone (second definiton)

for f ∈ I(1)A let ζf = τ f = ∆f = f ;

for f ∈ I(n)A ,n ≥ 2, let ζf , τ f ∈ I(n)A and ∆f ∈ I(n−1)
A be defined as

(ζf )(x1, x2, . . . , xn) = f (x2, . . . , xn, x1)

(τ f )(x1, x2, x3, . . . , xn) = f (x2, x1, x3, . . . , xn)

(∆f )(x1, x2, . . . , xn−1) = f (x1, x1, x2 . . . , xn−1)

for f ∈ I(n)A and g ∈ I(m)
A let f � g ∈ I(m+n−1)

A be defined as

(f � g)(x1, . . . , xm+n−1) =
∏

y ∈ A
y v g(x1, . . . , xm)

f (y , xm+1, . . . , xm+n−1)
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IS clones Definitions of IS clone

Example

A = {0,1}
OR 0 1
0 0 1
1 1 1

g
0 0
1 2

Let h(x1, x2) = OR(g(x1), x2).

For partial operations:
h 0 1
0 0 1
1 2 2

h(1, 1) = OR(g(1), 1) = 2

For IS operations:
h 0 1
0 0 1
1 2 1

h(1, 1) = OR(g(1), 1) = OR(0, 1) u OR(1, 1) = 1 u 1 = 1
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IS clones Definitions of IS clone

IS clone (second definiton)

IA = (IA; �, ζ, τ,∆,e2,A
1 ) full algebra of IS operations

Theorem
C ⊆ IA is an IS clone if and only if C is a subuniverse of the full algebra
of IS operations.
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IS clones IS operations vs. hyperoperations

IS operations vs. hyperoperations

λ : HA → IA, f 7→ f is

f is(x1, . . . , xn) =

{
f (x1, . . . , xn) , |f (x1, . . . , xn)| = 1

k ,otherwise

Theorem

(i) For |A| = 2, λ is an isomorphism from (HA; ◦, ζ, τ,∆,e2,A
1 ) to

(IA; �, ζ, τ, ∆, e2,A
1 ).

(ii) For |A| ≥ 3, λ is a homomorphism from (HA; ζ, τ,∆,e2,A
1 ) to

(IA; ζ, τ, ∆, e2,A
1 ).

(iii) For |A| ≥ 3, there exist f ,g ∈ HA satisfying λ(f ◦ g) 6= λ(f ) � λ(g).
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IS clones IS operations vs. hyperoperations

Example

A = {0,1,2}
(ii) λ is not injective

f
0 {0}
1 {1}
2 {0,1}

g
0 {0}
1 {1}
2 {0,2}

⇒

f is = g is

0 0
1 1
2 3
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IS clones IS operations vs. hyperoperations

Example

A = {0,1,2}

(iii) (f ◦ g)is 6= f is � g is

f 0 1 2
0 {1}
1 {0,1}
2 {1}

g
0 {0}
1 {0}
2 {0,2}

⇒

(f ◦ g)is 0 1 2
0 1
1 1
2 1

f ◦ g(2,1) = f (0,1) ∪ f (2,1) = {1}

f is 0 1 2
0 1
1 3
2 1

g is

0 0
1 0
2 3

⇒

f is � g is 0 1 2
0 1
1 1
2 3

f is � g is(2,1) = f is(0,1) u f is(1,1) u f is(2,1) = 3
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IS operations via a one-point extension Extended IS operations

One-point extension

Let us define the mapping IA → OA∪{k} : f 7→ f+, as follows:

f+(x1, . . . , xn) =
∏

(y1, . . . , yn) ∈ An,
(y1, . . . , yn) v (x1, . . . , xm)

f (y1, . . . , yn)

F+ = {f+ : f ∈ F} ⊆ OA∪{k} for F ⊆ IA.
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IS operations via a one-point extension Extended IS operations

Example (one-point extension)

A = {0,1}
Partial operation:

OR+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

OR+(2,1) = 2
Incompletely specified operation:

OR+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

OR+(2,1) = OR(0,1) u OR(1,1) = 1 u 1 = 1
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IS operations via a one-point extension Algebra of extended IS operations

Algebra of extended IS operations

Mapping IA → I+A : f 7→ f+, is not an isomorphism from
(IA; �, ζ, τ, ∆, e2,A

1 ) to (I+A ; ◦, ζ, τ,∆,e2,A∪{k}
1 ).

I+A is closed w.r.t. ζ, τ and e2,A∪{k}
1 :(

e2,A
1

)+
= e2,A∪{k}

1

(ζf )+ = ζ(f+)

(τ f )+ = τ(f+)

I+A is not closed w.r.t. ∆ and ◦ :

(∆f )+ 6= ∆(f+)

(f � g)+ 6= f+ ◦ g+
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IS operations via a one-point extension Algebra of extended IS operations

Example

(∆f )+ 6= ∆(f+)

f 0 1
0 0 0
1 2 0

⇒
∆f

0 0
1 0

⇒

(∆f )+

0 0
1 0
2 0

f+ 0 1 2
0 0 0 0
1 2 0 2
2 2 0 2

⇒

∆(f+)

0 0
1 0
2 2
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IS operations via a one-point extension Algebra of extended IS operations

Example

|A| ≥ 3⇒ (f � g)+ 6= f+ ◦ g+

f 0 1 2
0 1
1 1
2 2

g
0 0
1 0
2 1

⇒

(f � g)+ 0 1 2 3
0 1
1 1
2 1
3 1

(f � g)+(3,2) = f (g(0),2) u f (g(1),2) u f (g(2),2)
= f (0,2) u f (0,2) u f (1,2) = 1

f+ 0 1 2 3
0 1
1 1
2 2
3 3

g+

0 0
1 0
2 1
3 3

⇒

f+ ◦ g+ 0 1 2 3
0 1
1 1
2 1
3 3

(f+ ◦ g+)(3,2) = f+(g+(3),2) = 3
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IS operations via a one-point extension Algebra of extended IS operations

Extended IS clones

Full algebra of extended IS operations:

I+A = (I+A ; ◦i , ζ, τ,∆i ,e
2,A∪{k}
1 )

where
∆i(f ) = (∆f )+

f ◦i g = (f � g)+

Theorem

C ⊆ I+A is an extended IS clone
iff

C is a subuniverse of the full algebra I+A of extended IS operations.
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Future work

Future work

Further investigation of the lattice of IS clones:
- maximal IS clones
- minimal IS clones

Describing all IS clones using relations
Possible connection between IS clones and CSP
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Thank you for your attention!
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