Incompletely Specified Operations and their Clones

Jelena Čolić Oravec

University of Novi Sad

Progress in Decision Procedures: From Formalizations to Applications

Belgrade, March 30, 2013

Jelena Čolić Oravec (University of Novi Sad)

IS Operations and their Clones

Belgrade 2013 1 / 23

b 4 Fe

Previously on this subject...

Jelena Čolić, Hajime Machida and Jovanka Pantović. Clones of Incompletely Specified Operations. ISMVL 2012, pages 256–261.

Jelena Čolić, Hajime Machida and Jovanka Pantović. One-point Extension of the Algebra of Incompletely Specified Operations.

Multiple-Valued Logic and Soft Computing, to be published in 2013.

📄 Jelena Čolić.

On the Lattice of Clones of Incompletely Specified Operations. Conference on Universal Algebra and Lattice Theory, Szeged 2012.

イロト イヨト イヨト イヨト

What is an IS operation?

IS clones

- Compositions
- Definitions of IS clone
- IS operations vs. hyperoperations

IS operations via a one-point extension

- Extended IS operations
- Algebra of extended IS operations

What is an IS operation?

Total operation:

Let

$$h(x_1,x_2) = \operatorname{OR}(g(x_1),x_2)$$

Partial operation:

 $OR(g(x_1), 1)$ undefined if $g(x_1)$ is undefined

Incompletely specified operation:

$$OR(g(x_1), 1) = 1$$

Jelena Čolić Oravec (University of Novi Sad)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

How to define it formaly?

Let *A* be a finite set and $k \notin A$. Partial operation:

 $f: A^n \to A \cup \{k\}, \quad k - undefined$

Incompletely specified operation:

$$f: A^n \to A \cup \{k\}, \quad k - \text{unspecified}$$

 I_A - set of all IS operations on A

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Compositions

Composition of total and hyperoperations

• The composition of $f \in O_A^{(n)}$ and $g_1, \ldots, g_n \in O_A^{(m)}$ is an *m*-ary operation defined by

$$f(g_1,\ldots,g_n)(x_1,\ldots,x_m)=f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m)).$$

• The composition of $f \in H_A^{(n)}$ and $g_1, \ldots, g_n \in H_A^{(m)}$ is an *m*-ary hyperoperation defined by

$$f(g_1,\ldots,g_n)(x_1,\ldots,x_m) = \bigcup_{\substack{(y_1,\ldots,y_n) \in A^n \\ y_i \in g_i(x_1,\ldots,x_m) \\ 1 \le i \le n}} f(y_1,\ldots,y_n)$$

New composition

Definition

Let $f \in I_A^{(n)}$ and $g_1, \ldots, g_n \in I_A^{(m)}$. The *i*-composition of f and g_1, \ldots, g_n is an m-ary IS operation defined by

$$F[g_1,\ldots,g_n](x_1,\ldots,x_m) = \prod_{\substack{(y_1,\ldots,y_n) \in A^n \\ y_i \sqsubseteq g_i(x_1,\ldots,x_m) \\ 1 \le i \le n}} f(y_1,\ldots,y_n)$$

where

$$\prod \{x_i : 1 \le i \le l\} = \begin{cases} x_1 & \text{, if } x_1 = x_2 = \ldots = x_l, \\ k & \text{, otherwise.} \end{cases}$$
$$\sqsubseteq = \{(x, x) : x \in A \cup \{k\}\} \cup \{(x, k) : x \in A\}$$

 $A = \{0, 1\}$ composition of partial operations

 $OR(g_1,g_2)(0) = OR(g_1(0),g_2(0)) = 2$

i-composition of IS operations

 $OR[g_1, g_2](0) = OR(g_1(0), g_2(0)) = OR(1, 0) \sqcap OR(1, 1) = 1 \sqcap 1 = 1$

IS clone

•
$$e_i^{n,A}(x_1,\ldots,x_i,\ldots,x_n) = x_i$$
 is an *i*-th *n*-ary projection.

Definition

A set $C \subseteq I_A$ is called a clone of incompletely specified operations (or *IS clone*) if

- C contains all projections and
- C is closed with respect to i-composition.

- (E - E -

4 A N

IS clone (second definiton)

• for
$$f \in I_A^{(1)}$$
 let $\zeta f = \tau f = \Delta f = f$;
• for $f \in I_A^{(n)}$, $n \ge 2$, let $\zeta f, \tau f \in I_A^{(n)}$ and $\Delta f \in I_A^{(n-1)}$ be defined as
• $(\zeta f)(x_1, x_2, \dots, x_n) = f(x_2, \dots, x_n, x_1)$
• $(\tau f)(x_1, x_2, x_3, \dots, x_n) = f(x_2, x_1, x_3, \dots, x_n)$
• $(\Delta f)(x_1, x_2, \dots, x_{n-1}) = f(x_1, x_1, x_2, \dots, x_{n-1})$
• for $f \in I_A^{(n)}$ and $g \in I_A^{(m)}$ let $f \diamond g \in I_A^{(m+n-1)}$ be defined as
 $(f \diamond g)(x_1, \dots, x_{m+n-1}) = \prod_{\substack{y \in A \\ y \sqsubseteq g(x_1, \dots, x_m)}} f(y, x_{m+1}, \dots, x_{m+n-1})$

Jelena Čolić Oravec (University of Novi Sad)

э

∃ > < ∃</p>

 $\textit{A} = \{0,1\}$

Let $h(x_1, x_2) = OR(g(x_1), x_2)$.

For partial operations:

h	0	1
0	0	1
1	2	2

h(1,1) = OR(g(1),1) = 2

For IS operations:

$$\begin{array}{c|ccc}
h & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 2 & 1
\end{array}$$

 $h(1,1) = OR(g(1),1) = OR(0,1) \sqcap OR(1,1) = 1 \sqcap 1 = 1$

Jelena Čolić Oravec (University of Novi Sad)

프 > + 프 >

IS clone (second definiton)

$$\mathcal{I}_{A} = (I_{A}; \diamond, \zeta, \tau, \Delta, e_{1}^{2,A})$$
 full algebra of IS operations

Theorem

 $C \subseteq I_A$ is an IS clone if and only if C is a subuniverse of the full algebra of IS operations.

Jelena Čolić Oravec (University of Novi Sad)

IS operations vs. hyperoperations

$$\lambda: H_A \to I_A, f \mapsto f^{is}$$

$$f^{is}(x_1,\ldots,x_n) = \begin{cases} f(x_1,\ldots,x_n) &, |f(x_1,\ldots,x_n)| = 1\\ k &, \text{otherwise} \end{cases}$$

Theorem

(i) For |A| = 2, λ is an isomorphism from $(H_A; \circ, \zeta, \tau, \Delta, e_1^{2,A})$ to $(I_A; \diamond, \zeta, \tau, \Delta, e_1^{2,A})$.

(ii) For $|A| \ge 3$, λ is a homomorphism from $(H_A; \zeta, \tau, \Delta, e_1^{2,A})$ to $(I_A; \zeta, \tau, \Delta, e_1^{2,A})$.

(iii) For $|A| \ge 3$, there exist $f, g \in H_A$ satisfying $\lambda(f \circ g) \neq \lambda(f) \diamond \lambda(g)$.

B 6 4 B 6

4 A N

 $A = \{0, 1, 2\}$

(ii) λ is not injective

Jelena Čolić Oravec (University of Novi Sad)

æ

イロン イロン イヨン イヨン

$A = \{0,$	1,2}								
(iii) (f ∘	$g)^{\textit{is}} eq$	$f^{is}\diamond g^{is}$							
f	0 1	2		g		$(f \circ g)^i$	^s 0	1	2
0	{1	}	0	{0}	→	0		1	
1	{ 0 ,	1}	1	{0 }	\rightarrow	1		1	
2	{1	}	2	$\{0, 2\}$		2		1	
f o g	g(2,1) =	= <i>f</i> (0, 1)	∪ f(2 ,	1) = {1]	}				
f ^{is}	0 1	2	$g^{ m is}$		$f^{is}\diamond g$	^{is} 0 ·	12		
0	1		0 0	_ 	0	· ·	1	-	
1	3		1 0	\rightarrow	1	-	1		
2	1		2 3		2		3		
$f^{is} \diamond g^{is}(2,1) = f^{is}(0,1) \sqcap f^{is}(1,1) \sqcap f^{is}(2,1) = 3$									

2

イロト イヨト イヨト イヨト

Extended IS operations

One-point extension

Let us define the mapping $I_A \rightarrow O_{A \cup \{k\}}$: $f \mapsto f^+$, as follows:

$$f^+(x_1,\ldots,x_n) = \prod_{\substack{(y_1,\ldots,y_n) \in A^n, \\ (y_1,\ldots,y_n) \sqsubseteq (x_1,\ldots,x_m)}} f(y_1,\ldots,y_n)$$

 $F^+ = \{f^+ : f \in F\} \subseteq O_{A \cup \{k\}} \text{ for } F \subseteq I_A.$

Jelena Čolić Oravec (University of Novi Sad)

э

イロト イポト イヨト イヨト

Extended IS operations

Example (one-point extension)

 $A = \{0, 1\}$ Partial operation:

OR^+	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

 $OR^+(2,1) = 2$

Incompletely specified operation:

OR^+	0	1	2
0	0	1	2
1	1	1	1
2	2	1	2

 $OR^+(2,1) = OR(0,1) \sqcap OR(1,1) = 1 \sqcap 1 = 1$

Algebra of extended IS operations

Mapping
$$I_A \rightarrow I_A^+$$
: $f \mapsto f^+$, is not an isomorphism from
 $(I_A; \diamond, \zeta, \tau, \Delta, e_1^{2,A})$ to $(I_A^+; \circ, \zeta, \tau, \Delta, e_1^{2,A\cup\{k\}})$.
 I_A^+ is closed w.r.t. ζ, τ and $e_1^{2,A\cup\{k\}}$:
• $(e_1^{2,A})^+ = e_1^{2,A\cup\{k\}}$
• $(\zeta f)^+ = \zeta(f^+)$
• $(\tau f)^+ = \tau(f^+)$
 I_A^+ is not closed w.r.t. Δ and \circ :
• $(\Delta f)^+ \neq \Delta(f^+)$
• $(f \diamond g)^+ \neq f^+ \circ g^+$

3 → 4 3

 $(\Delta f)^+ \neq \Delta(f^+)$

æ

∃ > < ∃ >

$$|\pmb{A}| \geq \pmb{3} \Rightarrow (f \diamond \pmb{g})^+ \neq f^+ \circ \pmb{g}^+$$

$$\begin{array}{rcl} (f \diamond g)^+(3,2) &=& f(g(0),2) \sqcap f(g(1),2) \sqcap f(g(2),2) \\ &=& f(0,2) \sqcap f(0,2) \sqcap f(1,2) = 1 \end{array}$$

Jelena Čolić Oravec (University of Novi Sad)

э

3 1 4 3

Extended IS clones

Full algebra of extended IS operations:

$$\mathcal{I}_{\boldsymbol{A}}^{+} = (\boldsymbol{I}_{\boldsymbol{A}}^{+}; \circ_{\boldsymbol{i}}, \zeta, \tau, \boldsymbol{\Delta}_{\boldsymbol{i}}, \boldsymbol{e}_{1}^{2, \boldsymbol{A} \cup \{k\}})$$

where

 $\Delta_i(f) = (\Delta f)^+$ $f \circ_i g = (f \diamond g)^+$

Theorem

 $C \subseteq I_A^+$ is an extended IS clone iff C is a subuniverse of the full algebra \mathcal{I}_A^+ of extended IS operations.

モトイモト

4 A N

Future work

- Further investigation of the lattice of IS clones:
 - maximal IS clones
 - minimal IS clones
- Describing all IS clones using relations
- Possible connection between IS clones and CSP

∃ → (=)

Thank you for your attention!

Jelena Čolić Oravec (University of Novi Sad)

IS Operations and their Clones

Belgrade 2013 23 / 23

3 → 4 3