A syntax approach to automated detection of some redundancies in linear logic sequent derivations

Tatjana Lutovac
Faculty of Electrical Engineering, University of Belgrade

Joint work with James Harland
School of Computer Science and Information Technology, RMIT University, Melbourne, Australia

Workshop Progress in Decision Procedures: From Formalizations to Applications
Belgrade, March 30, 2013.
Example 1. Successful proof.

\[
\begin{align*}
\frac{r \vdash r}{r \vdash \text{Ax}} \\
\frac{r \vdash \text{Ax}}{r \vdash \neg p, r \vdash w?R} \\
\frac{r \vdash \neg q, ?p, r \vdash w?R}{r \vdash \neg q \neg p, r \vdash \varnothing R} \\
\frac{t \vdash t}{r, t \vdash t \otimes ((\neg q \neg p) \oplus s), r} \\
\frac{r \vdash (\neg q \neg p) \oplus s, r \vdash \varnothing R}{r, t \vdash t \otimes (\neg q \neg p) \oplus s, r \otimes R}
\end{align*}
\]

- the core (skeleton) of the proof?

- not used in Axioms: \(p, q, \) and \(s \)

- template for \((3^2 - 1) \cdot 3\) proofs

\[
\begin{align*}
r, t \vdash (t \otimes (\neg Q \neg F)) \oplus S, r \\
r, t \vdash (t \otimes (\neg Q \neg F)), r \\
r, t \vdash (t \otimes F) \oplus S, r \\
r, t \vdash (t \otimes F), r
\end{align*}
\]
Example 2. Formulae distribution

\[\Gamma_1, \Gamma_2 \vdash q \otimes r, \Delta_1, \Delta_2 \otimes R \]

Not used as principal formula: *r \varnothing p*

\[q, r \varnothing p \vdash q \quad \text{Ax} \]

\[q, r \varnothing p \vdash q, ?s \quad w?R \]

\[q, r \varnothing p \vdash q, ?s \oplus p \quad \text{Ax} \]

\[q, r \varnothing p \vdash q \otimes r, ?s \oplus p \quad \otimes R \]

**Redundant: ** *? s \oplus p*

\[q, r \varnothing p \vdash q \quad \text{Ax} \]

\[q, r \varnothing p \vdash q, ?s \quad w?R \]

\[q, r \varnothing p \vdash q, ?s \oplus p \quad \oplus R \]

\[q, r \varnothing p \vdash q \otimes r, ?s \oplus p \quad \otimes R \]
Example 3. Failed proof attempt.

\[
\frac{r \vdash r \text{ Ax}}{p, r, s \vdash r \otimes p, q} \quad \frac{p, s \vdash p, q}{p, r, s \vdash r \otimes p, q} \quad \otimes R
\]

\[
\frac{r \vdash r \text{ Ax}}{p, r \vdash r \otimes p} \quad \frac{p \vdash p \text{ Ax}}{p, r \vdash r \otimes p} \quad \otimes R
\]
• **Linear Logic**

 - Logic of resources (controlled weakening and contraction)

 linear formula \(\phi \)

 exponential formula \(?\phi \) or \(!\phi \)

 - **Non-monotonic logic**

 \(\Gamma \vdash \Delta \)

 \(\Gamma, \phi \vdash \Delta \)

 \(\Gamma \vdash \psi, \Delta \)

 \(\Gamma, \phi \vdash \psi, \Delta \)

 \(p, q \vdash p, r, s \)

 - Can be used as a meta-logic
• Our view of redundant (sub)formula:

1) neither used in axioms and initial rules nor critical for enabling proof branching

2) elimination which does not alter the search strategy applied (i.e. rule instances may be deleted);

3) no additional proof search is required (i.e. rule instances may not be added);

4) no loss of information at the leaves (i.e. axioms and some initial rules remain unchanged).
• Various approaches for detecting whether or not a formula occurrence is actually used in a derivation.

• Labelling and constraints techniques

\[\phi_1, \phi_2, \ldots \phi_k \vdash \psi_1, \psi_2, \ldots \psi_n \]

\[\phi_{1,[v_1]}, \phi_{2,[v_2]}, \ldots \phi_{k,[v_k]} \vdash \psi_{1,[w_1]}, \psi_{2,[w_2]}, \ldots \psi_{n,[w_n]} - \mathcal{C} \upharpoonright \mathcal{L} \]

• Accumulation of constraints during proof-search:

\[
\begin{array}{c}
\text{Premise}(s) \quad - \quad \mathcal{C} \cup \{\text{constraint}(s)\} \quad \upharpoonright \quad \mathcal{L} \\
\hline
\text{Conclusion} \quad - \quad \mathcal{C} \upharpoonright \mathcal{L}
\end{array}
\]
• General form of constraints:

\[\bar{\Gamma} = 1 \]
\[\bar{p} = 0 \]
\[\bar{\Gamma} \leq \bar{\Delta} \]
\[\langle \bar{F}_{[wu_1]} \rangle = \langle \bar{F}_{[wu_2]} \rangle \]

• Boolean expressions

<table>
<thead>
<tr>
<th>formula (F_{[w]})</th>
<th>corresponding Boolean expression (\bar{F}_{[w]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{[w]} = (? (\pi ? q \circ p_1)_{[w]})</td>
<td>(\bar{F}{[w]} = p{[w]} + q_{[w]} + p_{1,[w]})</td>
</tr>
<tr>
<td>(F_{[w]} = (? p \otimes (\pi q \circ p_1))_{[w]})</td>
<td>(\bar{F}{[w]} = p{[w]} + q_{[w]} + p_{1,[w]})</td>
</tr>
<tr>
<td>(F_{[w]} = p_{5,[w]})</td>
<td>(\bar{F}{[w]} = p{5,[w]})</td>
</tr>
<tr>
<td>(F_{[w]} = ? (\top j \oplus ? p_i)_{[w]})</td>
<td>(\bar{F}{[w]} = c \top j{[w]} + p_{i,[w]})</td>
</tr>
</tbody>
</table>
- Axioms and initial rules:
 \[
 - \mathcal{C} \cup \{p_i = 1, p_j = 1\} \vdash \mathcal{L} := \{p_i \vdash p_j\} \\
 p_i \vdash p_j \quad - \quad \mathcal{C} \upharpoonright \downarrow \mathcal{L} \quad Ax
 \]

- Rules that discharge some formulas
 \[
 \Gamma \vdash \phi, \Delta \quad - \quad \mathcal{C} \cup \{\psi \leq \phi\} \vdash \mathcal{L} \quad \upharpoonright \downarrow \mathcal{L} \quad \oplus R
 \]

 \[
 \Gamma \vdash \Delta \quad - \quad \mathcal{C} \cup \{\overline{\phi} \leq \overline{\Gamma + \Delta}\} \vdash \mathcal{L} \quad \downharpoonright \downarrow \mathcal{L} \quad w?R
 \]

 \[
 \Gamma \vdash \psi, \Delta \quad - \quad \mathcal{C} \upharpoonright \downarrow \mathcal{L} \quad \vdash \psi \quad w?R
 \]

 \[
 \vdash \psi \quad w?R
 \]
- **Multiplicative binary rules:**

\[
\Gamma_1 \vdash \phi, \Delta_1 - C \cup \{\overline{\Gamma_1} + \overline{\Delta}_1 \leq \overline{\phi}\} \Downarrow L_1 \quad \Gamma_2 \vdash \psi, \Delta_2 - C \cup \{\overline{\Gamma_2} + \overline{\Delta}_2 \leq \overline{\psi}\} \Downarrow L_2
\]

\[
\Gamma_1, \Gamma_2 \vdash \phi \otimes \psi, \Delta_1, \Delta_2 - C \Downarrow L_1 \cup L_2
\]

- **Contraction rules:**

\[
\Gamma \vdash ?F_{[wx_1]}, \ ?F_{[wx_2]}, \ \Delta - C \cup C' \Downarrow L \quad \text{c?}
\]

\[
\Gamma \vdash ?F_{[w]}, \ \Delta - C \Downarrow L \quad \text{c?}
\]

where \(C' = \{ (a_1, a_2, \ldots a_n)_{[wx_1]} = (a_1, a_2, \ldots a_n)_{[wx_2]} \ \vee \\
(a_1, a_2, \ldots a_n)_{[wx_1]} = (0, 0, \ldots 0) \ \vee \\
(a_1, a_2, \ldots a_n)_{[wx_2]} = (0, 0, \ldots 0) \\
(a_1, a_2, \ldots a_n)_{[w]} = (a_1, a_2, \ldots a_n)_{[wx_1]} + (a_1, a_2, \ldots a_n)_{[wx_2]} \} \)
- Additive binary rules;

- Rules that ’distribute’ active formulae among the antecedent and succedent

- Rules with no additional constraints:
\[
\Gamma, \phi, \psi \vdash \Delta \quad - \mathcal{C} \upharpoonright \mathcal{L} \\
\Gamma, \phi \otimes \psi \vdash \Delta \quad - \mathcal{C} \upharpoonright \mathcal{L} \otimes L
\]
Example: labelled proof search

\[\Pi_1 := \{ r \vdash r_1 \} \]

\[\vdash \mathcal{L}_2 := \{ r \vdash r_1 \} \]

\[\vdash w ? \mathcal{R} \]

\[\vdash \mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \]

where \(\Pi_1 \) is

\[\vdash - C_{\text{root}} \cup \{ t = 1, t_1 = 1, t \leq t_1 \} \]

\[\vdash \mathcal{L}_1 := \{ t \vdash t_1 \} \]

\[\text{Ax} \]

\[C_{\text{root}} = \{ r + t + t_1 + q + p + s = 1 \} \]
Algorithm \(RE \) (input: labelled deduction \(\pi_l \))

1. Calculate possible assignments for the Boolean variables in \(\pi_l \);

2. If there is an assignment \(\mathcal{I} \) with at least one Boolean variable being assigned the value 0, then:

 2.1 Delete the atoms assigned 0 (i.e. delete the formulae made up of such atoms and the corresponding inferences).

 2.2 Delete all labels and constraints.

 EXIT: proof \(\pi' \).

 Else EXIT: ‘Simplification of proof \(\pi_l \) is not possible’
Final set of constraints: \(r + r_1 \leq q + p + s, \),
\(s \leq q + p, \) \(r = 1, \) \(r_1 = 1, \) \(t_1 = 1, \) \(t = 1, \) \(t \leq t_1 \)

1. Calculate possible assignments:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2. Eliminate redundant formulae:

\[
\begin{align*}
&\frac{t \vdash t_1}{r,t \vdash t_1 \otimes q,r_1} \\
&\frac{r \vdash r_1}{r,t \vdash t_1 \otimes q,r_1} \quad \text{Ax} \\
&\frac{r \vdash q,r_1}{r,t \vdash t_1 \otimes q,r_1} \quad \otimes R \\
\end{align*}
\]

\[
\begin{align*}
&\frac{t \vdash t_1}{r,t \vdash t_1 \otimes (q \oplus s),r_1} \\
&\frac{r \vdash q\oplus s,r_1}{r,t \vdash t_1 \otimes (q \oplus s),r_1} \quad \otimes R \\
\end{align*}
\]
CONCLUSIONS and FUTURE WORK

✓ A technical, syntax approach;

✓ There was no a priori commitment to a particular search strategies;

✓ Sound and complete Algorithm RE;

✓ Contribution to a library of automated support tools for reasoning about sequent calculi proof search

- Analysis of failed proof attempts

\[
\begin{align*}
\Gamma, p_i \vdash p_j, \Delta & \quad - \mathcal{C} \cup \{p_j = 1, p_i = 1\} \Downarrow \mathcal{L} := \{p_i \vdash p_j\} \\
\mathcal{C} & \Downarrow \mathcal{L} \quad qAx
\end{align*}
\]

- Complexity analysis

- Combine Algorithm RE with our procedure for loop detection during proof search