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Example 1. Successful proof.

t ` t Ax

r ` r Ax
r ` ?p, r w?R

r ` ?q, ?p, r w?R

r ` ?q℘?p, r
℘R

r ` (?q℘?p)⊕s, r ⊕R

r, t ` t⊗ ((?q℘?p)⊕s), r ⊗R

- the core (skeleton) of the proof?

- not used in Axioms: p, q, and s

- template for (32 − 1) · 3 proofs

r, t ` (t ⊗ (?Q℘?F )) ⊕ S, r
r, t ` (t ⊗ (?Q℘?F )), r
r, t ` (t⊗ ?F ) ⊕ S, r
r, t ` (t⊗ ?F ), r

t ` t Ax
r ` r Ax

r ` ?F , r w?R

r, t ` t⊗ ?F , r
⊗R



Example 2. Formulae distribution

? ` q, ? ? ` r, ?
Γ1,Γ2 ` q ⊗ r,∆1,∆2

⊗R

Not used as
principal formula: r℘p

q, r℘p ` q Ax

q, r℘p ` q, ?s w?R

q, r℘p ` q, ?s⊕ p ⊕R r℘p ` r
q, r℘p ` q ⊗ r, ?s⊕ p ⊗R

Redundant: ?s⊕ p
r℘p

q, r℘p ` q Ax
q, r℘p ` q, ?s w?R

q, r℘p ` q, ?s⊕ p ⊕R
r ` r Ax

p ` p Ax
p ` ?s⊕ p ⊕R

r℘p ` r, ?s⊕ p
℘L

q, r℘p ` q ⊗ r, ?s⊕ p ⊗R



Example 3. Failed proof attempt.

r ` r Ax
?

p, s ` p, q
p, r, s ` r ⊗ p, q ⊗R

r ` r Ax
r ` r Ax p ` p Ax

p, r ` r ⊗ p ⊗R



• Linear Logic

− Logic of resources (controlled
weakening and contraction)

linear formula φ

exponential formula ?φ or !φ

− Non-monotonic logic Γ ` ∆
Γ, φ ` ∆ Γ ` ψ,∆ Γ, φ ` ψ,∆

p, q ` p, r, s

− Can be used as a meta-logic



• Our view of redundant (sub)formula:

1) neither used in axioms and initial
rules nor critical for enabling proof
branching

2) elimination which does not alter
the search strategy applied (i.e. rule
instances may be deleted);

3) no additional proof search is re-
quired (i.e. rule instances may not
be added);

4) no loss of information at the leaves
(i.e. axioms and some initial rules
remain unchanged ).



• Various approaches for detecting whether
or not a formula occurrence is actu-
ally used in a derivation.

• Labelling and constraints techniques

φ1, φ2, . . . φk ` ψ1, ψ2, . . . ψn

φ1,[v1]
, φ2,[v2]

, . . . φ
k,[vk]

` ψ1,[w1]
, ψ2,[w2]

, . . . ψ
n,[wn]

− C m L

• Accumulation of constraints during proof-
search:

Premise(s) − C ∪ {constraint(s)} m L
Conclusion − C m L



• General form of constraints:

Γ = 1

p = 0

Γ ≤ ∆

〈 F[wu1]〉 = 〈 F[wu2]〉

• Boolean expressions

formula F[w] corresponding Boolean expression F[w]

F[w] = (?(p⊗?q)℘p1)[w] F[w] = p[w] + q[w] + p1,[w]

F[w] = (?p⊗ (?q℘p1))[w] F[w] = p[w] + q[w] + p1,[w]

F[w] = p5,[w] F[w] = p5,[w]

F[w] =?(>j⊕?pi)[w] F[w] = c>j,[w] + pi,[w]



• EXAMPLES OF RULES:

- Axioms and initial rules;

−C ∪ {pi = 1, pj = 1} m L := {pi ` pj}
pi ` pj − C m L Ax

- Rules that discharge some formulas

Γ ` φ,∆ − C ∪ {ψ ≤ φ} m L
Γ ` φ⊕ ψ,∆ − C m L ⊕R

Γ ` ∆ − C ∪ {φ ≤ Γ + ∆} m L
Γ `?φ,∆ − C m L w?R

`
` ?F w?R



- Multiplicative binary rules:

Γ1 ` φ,∆1 − C ∪ {Γ1 + ∆1 ≤ φ} m L1 Γ2 ` ψ,∆2 − C ∪ {Γ2 + ∆2 ≤ ψ} m L2

Γ1,Γ2 ` φ⊗ ψ,∆1,∆2 − C m L1 ∪ L2
⊗R

- Contraction rules:

Γ ` ?F[wx1], ?F[wx2], ∆ − C ∪ C
′ m L

Γ ` ?F[w], ∆ − C m L c?

where C′
= { (a1, a2, . . . an)[wx1] = (a1, a2, . . . an)[wx2] ∨

(a1, a2, . . . an)[wx1] = (0, 0, . . . 0) ∨

(a1, a2, . . . an)[wx2] = (0, 0, . . . 0)

(a1, a2, . . . an)[w] = (a1, a2, . . . an)[wx1] + (a1, a2, . . . an)[wx2] }



- Additive binary rules;

- Rules that ’distribute’ active formulae
among the antecedent and succedent

- Rules with no additional constraints:
Γ, φ, ψ ` ∆ − C m L

Γ, φ⊗ ψ ` ∆ − C m L ⊗ L



Example: labelled proof search

Π1

−Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p, q ≤ r + p+ r1, r = 1, r1 = 1} m L2 := {r ` r1}
r ` r1 − Croot ∪ {q ≤ r + p+ r1, r + r1 ≤ q + p+ s, s ≤ q + p, q ≤ r + p+ r1} m L2

Ax

r `?p, r1 −Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p, q ≤ r + p+ r1} m L2
w?R

r ` ?q, ?p, r1 −Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p} m L2
w?R

r ` ?q℘?p, r1 −Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p} m L2
℘R

r ` (?q℘?p) ⊕ s, r1 −Croot ∪ {r + r1 ≤ q + p+ s} m L2
⊕R

r, t ` (t1 ⊗ ((?q℘?p) ⊕ s)), r1 − Croot m L = L1 ∪ L2
⊗R

where Π1 is

− Croot ∪ {t = 1, t1 = 1, t ≤ t1} m L1 := {t ` t1}
t ` t1 − Croot ∪ {t ≤ t1} m L1

Ax

Croot = {r + t+ t1 + q + p+ s = 1}



Algorithm RE (input: labelled deduction πl)

1. Calculate possible assignments for the Boolean
variables in πl;

2. If there is an assignment I with at least one
Boolean variable being assigned the value 0,
then:

2.1 Delete the atoms assigned 0 ( i.e. delete
the formulae made up of such atoms and
the corresponding inferences).

2.2 Delete all labels and constraints.

EXIT: proof π
′
.

Else EXIT: ‘Simplification of proof πl is not
possible’



Final set of constraints: r + r1 ≤ q + p + s,

s ≤ q+p, r = 1, r1 = 1, t1 = 1, t = 1, t ≤ t1

1. Calculate possible assignments:
p q s

0 1 0

1 0 0

1 1 0

1 1 0

1 0 1
2. Eliminate redundant formulae:

p = 0
q = 1
s = 0 7→

t ` t1 Ax
r ` r1

Ax

r ` ?q, r1
?wR

r, t ` t1⊗?q, r1
⊗R

p = 0
q = 1
s = 1 7→ t ` t1 Ax

r ` r1
Ax

r ` ?q, r1
?wR

r ` ?q ⊕ s, r1
⊕R

r, t ` t1 ⊗ (?q ⊕ s), r1
⊗R



CONCLUSIONS and FUTURE WORK

√
A technical, syntax approach;

√
There was no a priori commitment to a par-

ticular search strategies;
√

Sound and complete Algorithm RE;
√

Contribution to a library of automated sup-

port tools for reasoning about sequent cal-

culi proof search

- Analysis of failed proof attempts

− C ∪ {pj = 1, pi = 1} m L := {pi ` pj}
Γ, pi ` pj,∆ − C m L qAx

- Complexity analysis

- Combine Algorithm RE with our procedure

for loop detection during proof search


