
A syntax approach to automated
detection of some redundancies in linear

logic sequent derivations

Tatjana Lutovac

Faculty of Electrical Engineering, University of Belgrade

Joint work with James Harland

School of Computer Science and Information Technology, RMIT

University, Melbourne, Australia

Workshop Progress in Decision Procedures: From Formalizations
to Applications

Belgrade, March 30, 2013.

Example 1. Successful proof.

t ` t Ax

r ` r Ax
r ` ?p, r w?R

r ` ?q, ?p, r w?R

r ` ?q℘?p, r
℘R

r ` (?q℘?p)⊕s, r ⊕R

r, t ` t⊗ ((?q℘?p)⊕s), r ⊗R

- the core (skeleton) of the proof?

- not used in Axioms: p, q, and s

- template for (32 − 1) · 3 proofs

r, t ` (t ⊗ (?Q℘?F)) ⊕ S, r
r, t ` (t ⊗ (?Q℘?F)), r
r, t ` (t⊗ ?F) ⊕ S, r
r, t ` (t⊗ ?F), r

t ` t Ax
r ` r Ax

r ` ?F , r w?R

r, t ` t⊗ ?F , r
⊗R

Example 2. Formulae distribution

? ` q, ? ? ` r, ?
Γ1,Γ2 ` q ⊗ r,∆1,∆2

⊗R

Not used as
principal formula: r℘p

q, r℘p ` q Ax

q, r℘p ` q, ?s w?R

q, r℘p ` q, ?s⊕ p ⊕R r℘p ` r
q, r℘p ` q ⊗ r, ?s⊕ p ⊗R

Redundant: ?s⊕ p
r℘p

q, r℘p ` q Ax
q, r℘p ` q, ?s w?R

q, r℘p ` q, ?s⊕ p ⊕R
r ` r Ax

p ` p Ax
p ` ?s⊕ p ⊕R

r℘p ` r, ?s⊕ p
℘L

q, r℘p ` q ⊗ r, ?s⊕ p ⊗R

Example 3. Failed proof attempt.

r ` r Ax
?

p, s ` p, q
p, r, s ` r ⊗ p, q ⊗R

r ` r Ax
r ` r Ax p ` p Ax

p, r ` r ⊗ p ⊗R

• Linear Logic

− Logic of resources (controlled
weakening and contraction)

linear formula φ

exponential formula ?φ or !φ

− Non-monotonic logic Γ ` ∆
Γ, φ ` ∆ Γ ` ψ,∆ Γ, φ ` ψ,∆

p, q ` p, r, s

− Can be used as a meta-logic

• Our view of redundant (sub)formula:

1) neither used in axioms and initial
rules nor critical for enabling proof
branching

2) elimination which does not alter
the search strategy applied (i.e. rule
instances may be deleted);

3) no additional proof search is re-
quired (i.e. rule instances may not
be added);

4) no loss of information at the leaves
(i.e. axioms and some initial rules
remain unchanged).

• Various approaches for detecting whether
or not a formula occurrence is actu-
ally used in a derivation.

• Labelling and constraints techniques

φ1, φ2, . . . φk ` ψ1, ψ2, . . . ψn

φ1,[v1]
, φ2,[v2]

, . . . φ
k,[vk]

` ψ1,[w1]
, ψ2,[w2]

, . . . ψ
n,[wn]

− C m L

• Accumulation of constraints during proof-
search:

Premise(s) − C ∪ {constraint(s)} m L
Conclusion − C m L

• General form of constraints:

Γ = 1

p = 0

Γ ≤ ∆

〈 F[wu1]〉 = 〈 F[wu2]〉

• Boolean expressions

formula F[w] corresponding Boolean expression F[w]

F[w] = (?(p⊗?q)℘p1)[w] F[w] = p[w] + q[w] + p1,[w]

F[w] = (?p⊗ (?q℘p1))[w] F[w] = p[w] + q[w] + p1,[w]

F[w] = p5,[w] F[w] = p5,[w]

F[w] =?(>j⊕?pi)[w] F[w] = c>j,[w] + pi,[w]

• EXAMPLES OF RULES:

- Axioms and initial rules;

−C ∪ {pi = 1, pj = 1} m L := {pi ` pj}
pi ` pj − C m L Ax

- Rules that discharge some formulas

Γ ` φ,∆ − C ∪ {ψ ≤ φ} m L
Γ ` φ⊕ ψ,∆ − C m L ⊕R

Γ ` ∆ − C ∪ {φ ≤ Γ + ∆} m L
Γ `?φ,∆ − C m L w?R

`
` ?F w?R

- Multiplicative binary rules:

Γ1 ` φ,∆1 − C ∪ {Γ1 + ∆1 ≤ φ} m L1 Γ2 ` ψ,∆2 − C ∪ {Γ2 + ∆2 ≤ ψ} m L2

Γ1,Γ2 ` φ⊗ ψ,∆1,∆2 − C m L1 ∪ L2
⊗R

- Contraction rules:

Γ ` ?F[wx1], ?F[wx2], ∆ − C ∪ C
′ m L

Γ ` ?F[w], ∆ − C m L c?

where C′
= { (a1, a2, . . . an)[wx1] = (a1, a2, . . . an)[wx2] ∨

(a1, a2, . . . an)[wx1] = (0, 0, . . . 0) ∨

(a1, a2, . . . an)[wx2] = (0, 0, . . . 0)

(a1, a2, . . . an)[w] = (a1, a2, . . . an)[wx1] + (a1, a2, . . . an)[wx2] }

- Additive binary rules;

- Rules that ’distribute’ active formulae
among the antecedent and succedent

- Rules with no additional constraints:
Γ, φ, ψ ` ∆ − C m L

Γ, φ⊗ ψ ` ∆ − C m L ⊗ L

Example: labelled proof search

Π1

−Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p, q ≤ r + p+ r1, r = 1, r1 = 1} m L2 := {r ` r1}
r ` r1 − Croot ∪ {q ≤ r + p+ r1, r + r1 ≤ q + p+ s, s ≤ q + p, q ≤ r + p+ r1} m L2

Ax

r `?p, r1 −Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p, q ≤ r + p+ r1} m L2
w?R

r ` ?q, ?p, r1 −Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p} m L2
w?R

r ` ?q℘?p, r1 −Croot ∪ {r + r1 ≤ q + p+ s, s ≤ q + p} m L2
℘R

r ` (?q℘?p) ⊕ s, r1 −Croot ∪ {r + r1 ≤ q + p+ s} m L2
⊕R

r, t ` (t1 ⊗ ((?q℘?p) ⊕ s)), r1 − Croot m L = L1 ∪ L2
⊗R

where Π1 is

− Croot ∪ {t = 1, t1 = 1, t ≤ t1} m L1 := {t ` t1}
t ` t1 − Croot ∪ {t ≤ t1} m L1

Ax

Croot = {r + t+ t1 + q + p+ s = 1}

Algorithm RE (input: labelled deduction πl)

1. Calculate possible assignments for the Boolean
variables in πl;

2. If there is an assignment I with at least one
Boolean variable being assigned the value 0,
then:

2.1 Delete the atoms assigned 0 (i.e. delete
the formulae made up of such atoms and
the corresponding inferences).

2.2 Delete all labels and constraints.

EXIT: proof π
′
.

Else EXIT: ‘Simplification of proof πl is not
possible’

Final set of constraints: r + r1 ≤ q + p + s,

s ≤ q+p, r = 1, r1 = 1, t1 = 1, t = 1, t ≤ t1

1. Calculate possible assignments:
p q s

0 1 0

1 0 0

1 1 0

1 1 0

1 0 1
2. Eliminate redundant formulae:

p = 0
q = 1
s = 0 7→

t ` t1 Ax
r ` r1

Ax

r ` ?q, r1
?wR

r, t ` t1⊗?q, r1
⊗R

p = 0
q = 1
s = 1 7→ t ` t1 Ax

r ` r1
Ax

r ` ?q, r1
?wR

r ` ?q ⊕ s, r1
⊕R

r, t ` t1 ⊗ (?q ⊕ s), r1
⊗R

CONCLUSIONS and FUTURE WORK

√
A technical, syntax approach;

√
There was no a priori commitment to a par-

ticular search strategies;
√

Sound and complete Algorithm RE;
√

Contribution to a library of automated sup-

port tools for reasoning about sequent cal-

culi proof search

- Analysis of failed proof attempts

− C ∪ {pj = 1, pi = 1} m L := {pi ` pj}
Γ, pi ` pj,∆ − C m L qAx

- Complexity analysis

- Combine Algorithm RE with our procedure

for loop detection during proof search

