
1 IC | 28.03.2013 School of Computer and Communication Sciences

Implicit Programming
Viktor Kunčak

http://lara.epfl.ch

GOAL
Help people construct software

that does what they expect.

Personal approach:
• embrace modern programming languages
• focus on algorithms and tools

Problem

Programming is hard, because
computation is given explicitly

Claim:

We can make it easier, if we
support implicit computation

(how)

(what)

human intentions

GAP

Implicit Programming

human intentions

IMPRO

1) Synthesis Procedures

= compiler for specifications

Numeric domains: linear integers, reals (PLDI’10, OOPSLA’11)

Symbolic domains: Calculus of Data Structures (VMCAI’10,CSL’10)

constraint between inputs and outputs
(from a decidable class)

computable function
from inputs to outputs

 choose ((h, m, s) ⇒
 h * 3600 + m * 60 + s == totalSeconds
 /\ h ≥ 0
 /\ m ≥ 0 /\ m < 60
 /\ s ≥ 0 /\ s < 60)

Synthesis for Arithmetic

 val t1 = totalSeconds div 3600
 val t2 = totalSeconds -3600 * t1
 val t3 = t2 div 60
 val t4 = totalSeconds - 3600 * t1 - 60 * t3
 (t1, t3, t4)

Implemented as an extension of the Scala compiler.

Properties of Synthesis Algorithm

• For every formula in linear integer arithmetic
– synthesis algorithm terminates

– produces the most general precondition
(assertion saying when result exists)

– generated code gives correct values whenever correct
values exist

• If there are multiple or no solutions for some
parameters, we get a warning

• Extended to arithmetic pattern matching

• Extended to sets with cardinalities

• Handling bitwise operations (FMCAD'10, IJCAR'12)

Extensions to Data Structures

def insert(x : Int, t : Tree) = choose(t1:Tree =>
 isRBT(t1) && content(t1) = content(t) ++ Set(x))

def remove(x : Int, t : Tree) = choose(t1:Tree =>
 isRBT(t1) && content(t1)=content(t) – Set(x))

The biggest expected payoff:

declarative knowledge is more reusable

Technology: Constraint Solving

• Run-time checking: very useful: C(t)

• Verification that functions meet contracts or
algebraic statements:  x. C(x)

• Falsification: produce a counterexample when
the verification fails: find x such that  C(x)

• Computation: compute any (best) value that
satisfies a given constraint: find x such that C(x)

• Test generation: enumerate inputs that satisfy
given precondition: find all x such that C(x)

• Synthesis: specialize constraint solver
for a given constraint: find f such that x.C(x,f(x))

Two Constraint Solving Techniques

1) Constraints with recursive functions:
Leon algorithm for solving
computable constraints
(POPL’10, SAS’11, POPL’12)

2) Constraints on bags, sets, and sizes:
optimal complexity through sparse
encoding into integer linear programs
(CADE’07, VMCAI’08, CAV’08)

α : Tree  C
α(Nil) = empty
α(NODE(l, v, r)) = combine(α(l), v, α(r))
 e.g. α(l) U {v} U α(r)

General Form of Recursive Functions

Many operations have this form:

– elements, size, height, max element,
is-sorted, free variables in a syntax tree

– moreover, they are sufficiently surjective

Example: elems function that computes the set
of elements stored in the tree.

empty : C
combine : (C, E, C) → C

 Extend logic of recursive data structures (q.f. term algebra with):

‘Surjectivity’ of Set Abstraction

{ 1, 5 } 5

1

1

5

5

5 1

1

…

∅
elems-1

elems-1

|elems-1(∅)| = 1
|elems-1({1, 5})| = ∞

Propagating Constraints to Sets

c4 = c2 ∪ { e2 } ∧ c5 ≠ c1 ∪ { e2 } t1 = Node(t2, e1, t3)
t5 = Node(t4, e1, t3) ∧

The resulting formula is in the
decidable theory of sets

c1 = c2 ∪ { e1 } ∪ c3

c5 = c4 ∪ { e1 } ∪ c3 ∧

additional derived constraints

set constraints from the input formula

c4 = c2 ∪ { e2 }
c5 ≠ c1 ∪ { e2 }
c1 = c2 ∪ { e1 } ∪ c3

c5 = c4 ∪ { e1 } ∪ c3

∧
∧
∧

resulting formula

ci = elems(ti), i ∈ { 1, …, 5 }

tree constraints from the input formula

mappings from the input formula

constraint solver
for sets

constraint solver
for sets

Mapping Solutions Back

c4 = c2 ∪ { e2 } ∧ c5 ≠ c1 ∪ { e2 } t1 = Node(t2, e1, t3)
t5 = Node(t4, e1, t3) ∧

c1 = c2 ∪ { e1 } ∪ c3

c5 = c4 ∪ { e1 } ∪ c3 ∧

c4 = c2 ∪ { e2 }
c5 ≠ c1 ∪ { e2 }
c1 = c2 ∪ { e1 } ∪ c3

c5 = c4 ∪ { e1 } ∪ c3

∧
∧
∧

additional derived constraints

set constraints from the input formula

resulting formula

ci = elems(ti), i ∈ { 1, …, 5 }

tree constraints from the input formula

mappings from the input formula

human intentions

http://lara.epfl.ch/w/insynth

Interactive Synthesis within an IDE

http://lara.epfl.ch/w/insynth
http://lara.epfl.ch/w/insynth

Programming by Demonstration

18

Graphical editing of not only terrain but also behavior
Indicate/correct the desired actions by demonstrating them

Results for Fully Automatic Verification

Benchmark LoC #Funs. #VCs. Time (s)

ListOperations 107 15 27 0.76

AssociativeList 50 5 11 0.23

InsertionSort 99 6 15 0.42

RedBlackTrees 117 11 24 3.73

PropositionalLogic 86 9 23 2.36

AmortizedQueue 124 14 32 3.37

677 71 155 11.66

Functional correctness properties of data structures: red-black trees implement a set
and maintain height invariants, associative list has read-over-write property, insertion
sort returns a sorted list of identical content, amortized queue implements a balanced
queue, etc.

Project: Implicit Programming
• Compiling Specifications
• Helping People Construct Specifications

Expertise: advancing constraint solving
theory and practice to enable
• Verification
• Falsification
• Computation
• Test generation
• Synthesis
• Development within IDE
• End-user programming

Conclusions
requirements

Constraints

Solvers and
synthesizers

42

http://lara.epfl.ch/~kuncak

http://lara.epfl.ch/~kuncak

21 IC | 28.03.2013 School of Computer and Communication Sciences

Thank you.

Viktor Kuncak
lara.epfl.ch
ic.epfl.ch

