(i

JLE POLYTECHNIQUE
FF[U\H’[I’I\[I\ INE

Implicit Programming
Viktor Kuncak
http://lara.epfl.ch

GOAL

Help people construct software
that does what they expect.

Personal approach:
e embrace modern programming languages
* focus on algorithms and tools

Problem

Programming is hard, because

computation is given explicitly

(how)
Claim:

We can make it easier, if we

support implicit computation
(what)

human intentions

GAP

human intentions

1) Synthesis Procedures

= compller for specifications

constraint between inputs and outputs
(from a decidable class)

computable function
from inputs to outputs

Numeric domains: linear integers, reals (PLDI’10, OOPSLA’11)
Symbolic domains: Calculus of Data Structures (VMCAI'10,CSL'10)

Synthesis for Arithmetic

/choose ((h, m, s) = N
h * 3600 + m * 60 + s == totalSeconds
/Ah2>0
/Am=>0/\m<60
k/\SZO/\S<60) .

val t1 = totalSeconds div 3600

val t2 = totalSeconds -3600 * t1

val t3 =t2 div 60 <
val t4 = totalSeconds - 3600 * t1 - 60 * t3

(t1, t3, t4)

Implemented as an extension of the Scala compiler.

Properties of Synthesis Algorithm

For every formula in linear integer arithmetic
— synthesis algorithm terminates

— produces the most general precondition
(assertion saying when result exists)

— generated code gives correct values whenever correct
values exist

If there are multiple or no solutions for some
parameters, we get a warning

Extended to arithmetic pattern matching
Extended to sets with cardinalities
Handling bitwise operations (FMCAD'10, 1JCAR'12)

Extensions to Data Structures

def insert(x : Int, t : Tree) = choose(tl:Tree =>
iSRBT(t1) && content(tl) = content(t) ++ Set(x))

def remove(x : Int, t : Tree) = choose(t1:Tree =>
isSRBT(t1) && content(tl)=content(t) — Set(x))

The biggest expected payoff:
declarative knowledge is more reusable

Technology: Constraint Solving

Run-time checking: very useful: C(t)

Verification that functions meet contracts or
algebraic statements: V x. C(x)

Falsification: produce a counterexample when
the verification fails: find x such that — C(x)

Computation: compute any (best) value that
satisfies a given constraint: find x such that C(x)

Test generation: enumerate inputs that satisfy
given precondition: find all x such that C(x)

Synthesis: specialize constraint solver
for a given constraint: find f such that Vx.C(x,f(x))

Two Constraint Solving Techniques

1) Constraints with recursive functions:

Leon algorithm for solving
computable constraints
(POPL'10, SAS’11, POPL'12)

Constraints on bags, sets, and sizes:
optimal complexity through sparse

encoding into integer linear programs
(CADE’07, VMCAI'08, CAV’08)

General Form of Recursive Functions

Extend logic of recursive data structures (q.f. term algebra with):

a: Tree > C
a(Nil) = empty empty : C
a(NODE(l, v, r)) = combine(a(l), v, a(r)) combine: (C,E,C) > C

e.g. afl) U {v}Uafr)
Many operations have this form:

— elements, size, height, max element,
is-sorted, free variables in a syntax tree

— moreover, they are sufficiently surjective

Example: elems function that computes the set
of elements stored in the tree.

‘Surjectivity’ of Set Abstraction

¢ elems? }Q

{ 1’ 5 } elems!

lelems*(@)]| =1
|lelems ({1, 5})| = o=

Propagating Constraints to Sets

tree constraints from the input formula set constraints from the input formula
t, = Node(t,, e,, t;) £C4=C2U{e2}/\C5¢C1U{e2}}
A tc. = Node(t,, e, t5)
mappings from the input formula

c,=elems(t),i€{1,..5}
j s) N
v

c,=c,U{e,}

ANc.zc,U{e,}

N
{ c,=c,U{e; }Uc >/\c1=c2U{e1}Uc3
N cc=c,Uqi1e,1Uc NCc=c,Uq1e,;UC

5 4 { 1 } 3/ K 5 4 { 1 } 3/
additional derived constraints % resulting formula

The resulting formula is in the | constraint solver
decidable theory of sets for sets

Mapping Solutions Back

tree constraints from the input formula set constraints from the input formula

t1=Node(t2,e1,t3) {C4=C2U{62}AC5¢C1U{62}}
A tc. = Node(t,, e, t5)

mappings from the input formula

c,=elems(t),i€{1,..5}

\ 4

—————

a O
c,=c,U{e,}

v . ANc.zc,U{e,}
c,=c,U{e;}Uc; €= ====—~- A= U{e }UCg
/\c5=c4U{e1}Uc3j K/\c5=c4u{e1}Uc3/
additional derived constraints % resulting formula

constraint solver
for sets

human intentions s ad = ek

2)

\ specitica

Interactive Synthesis within an IDE

http://lara.epfl.ch/w/insynth

import java.io.

- object Main {
= def main(args:Array[string]) = {

[=n

var

ody = "email.txt"
var sig

= "signature.txt"

var inStream:SequencelnputStream =|

e

var eof:Boolean = false; new sequencelnputsStreaminew FilelnputStream(sig), new FilelnputStream(sig))
var byteCount:Int = @; new SequencelnputStreaminew FilelnputStreami(sig), new FilelnputStream(body])
while (l!eof) { new SequencelnputStreaminew FilelnputStream (body), new FilelnputStream(sig))
?ar cxInt = inStrean.read() new SequencelnputStreaminew FilelnputStream(body), new FilelnputStreamibody])
£ (1) q P P ¥ 3 ¥
if (c == -
eof = true; new Sequencelnputitream(new FilelnputStream(sig), System.in)
else {
System.out.print(c.toChar);
byteCount+=1;
} Press 'Ctrl=5pace’ to show Default Proposals
} L8 A

System.out.println(byteCount + " bytes were read”);
instream.close();

http://lara.epfl.ch/w/insynth
http://lara.epfl.ch/w/insynth

Programming by Demonstration

Graphical editing of not only terrain but also behavior
Indicate/correct the desired actions by demonstrating them

Results for Fully Automatic Verification

seramans___loc__is i)

ListOperations 0.76
AssociativelList 50 5 11 0.23
InsertionSort 99 6 15 0.42
RedBlackTrees 117 11 24 3.73
PropositionalLogic 86 9 23 2.36
AmortizedQueue 124 14 32 3.37

677 71 155 11.66

Functional correctness properties of data structures: red-black trees implement a set
and maintain height invariants, associative list has read-over-write property, insertion
sort returns a sorted list of identical content, amortized queue implements a balanced
queue, etc.

Conclusions

Project: Implicit Programming
 Compiling Specifications
* Helping People Construct Specifications

requirements

Constraints

Expertise: advancing constraint solving
theory and practice to enable

* Verification

* Falsification
 Computation

* Test generation

* Synthesis
 Development within IDE
* End-user programming

http://lara.epfl.ch/~kuncak

http://lara.epfl.ch/~kuncak

(i

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Thank you.

Viktor Kuncak
lara.epfl.ch
ic.epfl.ch

4t

e e R L

TR [P

