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GOAL 
Help people construct software 

that does what they expect. 

Personal  approach: 
• embrace modern programming languages 
• focus on algorithms and tools 



Problem 

Programming is hard, because 
computation is given explicitly 

Claim: 

We can make it easier, if we 
support implicit computation 

(how) 

(what) 



human intentions 

GAP 

Implicit Programming 



human intentions 
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1) Synthesis Procedures 

= compiler for specifications 

Numeric domains: linear integers, reals (PLDI’10, OOPSLA’11) 

Symbolic domains: Calculus of Data Structures (VMCAI’10,CSL’10) 

constraint between inputs and outputs 
(from a decidable class) 

computable function  
from inputs to outputs 



 
   choose ((h, m, s) ⇒  
               h * 3600 + m * 60 + s == totalSeconds 
        /\ h ≥ 0 
        /\ m ≥ 0 /\ m < 60 
        /\ s ≥ 0 /\ s < 60  ) 

Synthesis for Arithmetic 

 
    val t1 = totalSeconds div 3600 
    val t2 = totalSeconds -3600 * t1  
    val t3 = t2 div 60 
    val t4 = totalSeconds - 3600 * t1 - 60 * t3 
    (t1, t3, t4) 

Implemented as an extension of the Scala compiler. 



Properties of Synthesis Algorithm 

• For every formula in linear integer arithmetic 
– synthesis algorithm terminates 

– produces the most general precondition  
(assertion saying when result exists) 

– generated code gives correct values whenever correct 
values exist 

• If there are multiple or no solutions for some 
parameters, we get a warning 

• Extended to arithmetic pattern matching 

• Extended to sets with cardinalities 

• Handling bitwise operations (FMCAD'10, IJCAR'12) 



Extensions to Data Structures 

def insert(x : Int, t : Tree) = choose(t1:Tree => 
   isRBT(t1)  &&  content(t1) = content(t) ++ Set(x)) 

def remove(x : Int, t : Tree) = choose(t1:Tree => 
   isRBT(t1) && content(t1)=content(t) – Set(x)) 

The biggest expected payoff: 

declarative knowledge is more reusable 



Technology: Constraint Solving 

• Run-time checking: very useful: C(t) 

• Verification that functions meet contracts or 
algebraic statements:  x. C(x) 

• Falsification: produce a counterexample when 
the verification fails:  find x such that  C(x) 

• Computation: compute any (best) value that 
satisfies a given constraint: find x such that C(x) 

• Test generation: enumerate inputs that satisfy 
given precondition: find all x such that C(x) 

• Synthesis: specialize constraint solver  
for a given constraint: find f such that x.C(x,f(x)) 



Two Constraint Solving Techniques 

1) Constraints with recursive functions: 
Leon algorithm for solving 
computable constraints 
(POPL’10, SAS’11, POPL’12) 

2) Constraints on bags, sets, and sizes: 
optimal complexity through sparse 
encoding into integer linear programs 
(CADE’07, VMCAI’08, CAV’08) 



α :  Tree  C 
α(Nil) = empty 
α(NODE(l, v, r)) = combine(α(l), v, α(r)) 
                 e.g.    α(l) U {v} U α(r) 

General Form of Recursive Functions 

Many operations have this form: 

– elements, size, height, max element,  
is-sorted, free variables in a syntax tree 

– moreover, they are sufficiently surjective 

Example: elems function that computes the set 
of elements stored in the tree. 

empty : C 
combine : (C, E, C) → C 

 Extend logic of recursive data structures (q.f. term algebra with): 



‘Surjectivity’ of Set Abstraction 
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|elems-1(∅)| = 1 
|elems-1({1, 5})| = ∞ 



Propagating Constraints to Sets 

c4 = c2 ∪ { e2 } ∧ c5 ≠ c1 ∪ { e2 } t1 = Node(t2, e1, t3) 
t5 = Node(t4, e1, t3)  ∧ 

The resulting formula is in the 
decidable theory of sets 

c1 = c2 ∪ { e1 } ∪ c3 

c5 = c4 ∪ { e1 } ∪ c3 ∧ 

additional derived constraints 

set constraints from the input formula 

c4 = c2 ∪ { e2 } 
c5 ≠ c1 ∪ { e2 } 
c1 = c2 ∪ { e1 } ∪ c3 

c5 = c4 ∪ { e1 } ∪ c3 

∧ 
∧ 
∧ 

resulting formula 

ci = elems(ti), i ∈ { 1, …, 5 } 

tree constraints from the input formula 

mappings from the input formula 

constraint solver 
for sets 



constraint solver 
for sets 

Mapping Solutions Back 

c4 = c2 ∪ { e2 } ∧ c5 ≠ c1 ∪ { e2 } t1 = Node(t2, e1, t3) 
t5 = Node(t4, e1, t3)  ∧ 

c1 = c2 ∪ { e1 } ∪ c3 

c5 = c4 ∪ { e1 } ∪ c3 ∧ 

c4 = c2 ∪ { e2 } 
c5 ≠ c1 ∪ { e2 } 
c1 = c2 ∪ { e1 } ∪ c3 

c5 = c4 ∪ { e1 } ∪ c3 

∧ 
∧ 
∧ 

additional derived constraints 

set constraints from the input formula 

resulting formula 

ci = elems(ti), i ∈ { 1, …, 5 } 

tree constraints from the input formula 

mappings from the input formula 



human intentions 



http://lara.epfl.ch/w/insynth 

Interactive Synthesis within an IDE 

http://lara.epfl.ch/w/insynth
http://lara.epfl.ch/w/insynth


Programming by Demonstration 

18 

Graphical editing of not only terrain but also behavior 
Indicate/correct the desired actions by demonstrating them 



Results for Fully Automatic Verification 

Benchmark LoC #Funs. #VCs. Time (s) 

ListOperations 107 15 27 0.76 

AssociativeList 50 5 11 0.23 

InsertionSort 99 6 15 0.42 

RedBlackTrees 117 11 24 3.73 

PropositionalLogic 86 9 23 2.36 

AmortizedQueue 124 14 32 3.37 

677 71 155 11.66 

Functional correctness properties of data structures: red-black trees implement a set 
and maintain height invariants, associative list has read-over-write property, insertion 
sort returns a sorted list of identical content, amortized queue implements a balanced 
queue, etc. 



Project: Implicit Programming 
• Compiling Specifications 
• Helping People Construct Specifications 
 
Expertise: advancing constraint solving 
theory and practice to enable 
• Verification 
• Falsification 
• Computation 
• Test generation 
• Synthesis 
• Development within IDE 
• End-user programming 

Conclusions 
requirements 

Constraints 

Solvers and 
synthesizers 
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Thank you. 
 
 
Viktor Kuncak 
lara.epfl.ch 
ic.epfl.ch 


