
Development and Evaluation of LAV:

An SMT-Based Error Finding Platform

Milena Vujošević-Janičić and Viktor Kunčak

Verified Software, Theories, Tools and Experiments
Philadelphia, USA

January 28-29, 2012.

Agenda

• Motivation and short overview of LAV

• Modeling of programs

• Implementation and preliminary evaluation

• Conclusions

1

Agenda

• Motivation and a short overview of the system

• Modeling of programs

• Implementation and preliminary evaluation

• Conclusions

2

Motivation and a Short Overview of the System

• LAV* is a bug-finding tool, it works on the LLVM low-level

intermediate representation

• LAV combines symbolic execution, SAT encoding of pro-

gram’s behavior and bounded model checking

• LAV generates correctness conditions that are passed to a

suitable SMT solver

*LLVM Automated Verifier

3

Motivation and a Short Overview of the System — Ex.

0: int main() line 10: UNSAFE
1: {
2: int a0, a1, k, div = 1; function: main
3: if(a0>0) error: division_by_zero
4: a0 = 1; 3: a0 == 0, a1 == 0, div == 1
5: else a0 = -1; 5: a0 == -1, a1 == 0, div == 1
6: if(a1>0) 6: a0 == -1, a1 == 0, div == 1
7: a1 = 1; 8: a0 == -1, a1 == -1, div == 1
8: else a1 = -1; 10: a0 == -1, a1 == -1, div == 0
9: div = a0+a1+2;
10: k = 1/div;
11: }

C code example (left) and LAV output (right)

4

Motivation and a Short Overview of the System — Ex.

LAV KLEE
ifs & # paths bug in bug in bug in bug in
vars the first the last no the first the last no

path path bug path path bug

2 4 0.07 0.07 0.07 < 1 0.05 0.05
5 32 0.18 0.19 0.18 < 1 0.55 0.55

10 1024 0.41 0.46 0.38 < 1 45.00 45.00
11 2048 0.42 0.54 0.43 < 1 107.00 107.00
12 4096 0.50 0.67 0.50 < 1 268.00 268.00

20 1’048’576 0.73 1.82 0.72 < 1 TO TO

60 260 25.00 39.00 4.18 ≈ 1 TO TO

100 2100 153.00 111.00 15.00 ≈ 1 TO TO

Path Explosion Example

5

Agenda

• Motivation and a short overview of the system

• Modeling of programs

• Implementation and preliminary evaluation

• Conclusions

6

Instructions, Variables, and Data types

• In LLVM:

– Each program function consists of blocks of instructions,

with no branching and no loops

– Each block can be entered only at its entry point, and left

only through its last command

• In LAV: Block summary, Transformation(b), is constructed

by symbolic execution; it describes the way in which a block

b transforms the store of the program

7

Instructions, Variables, and Data types: Instructions

• Each instruction is symbolically executed, it transforms the

store of a program and may add some constraints

code store additional constraints
a b

int a, b; a0 b0 empty
b += a; b0+a0 empty
a = 3; 3 empty

• Values of the variables at the exit point of the block are given

in terms of the values of the variables at the entry point

8

Instructions, Variables, and Data types: Pointers

• Buffers — sequences of memory allocated statically or dy-

namically; accessible by a pointer and an offset

• For a pointer p, left(p) and right(p) keep track of numbers

of bytes reserved for the pointer p on its left and its right

code store additional constraints
b p

int b[10], *p; b0 p0 left(b0) = 0 ∧ right(b0) = 40
∧left(p0) = 0 ∧ right(p0) = 0

p = b+3; b0+12 empty

9

Instructions, Variables and Data types: Memory

• For accessing memory via pointers: theory of arrays

• Flat memory model is used

• The value of the array mem is also kept in the store

code store additional constraints
mem b p i

int b[10], *p, i; m0 b0 p0 i0 left(b0) = 0 ∧ right(b0) = 40
∧left(p0) = 0 ∧ right(p0) = 0

p = b+3; b0+12

*(p+i) = 5 ; store(m0, b0+12+

buffer overflow? +i0*4, 5)*

*assuming sizeof(int) = 4

10

Instructions, Variables and Data types: Example

• *(p+i) introduces a buffer overflow iff

left(p) ≤ i · sizeof(∗p) < right(p) is false

instruction safety condition available
for the instruction constraints

*(p+i) = 5; left(b0) = 0
buffer left(b0 + 12) ≤ i0 · 4 ∧right(b0) = 40
overflow? ∧ ∧left(p0) = 0

i0 · 4 < right(b0 + 12) ∧right(p0) = 0

• Additional constraint (an instance of specific axioms):

left(b0 + 12) = left(b0)− 12∧ right(b0 + 12) = right(b0)− 12

11

Instructions, Variables and Data types: Function Calls

• Function calls are modeled according to available information

about the function, one of:

– Contract available

– Definition available

– Nothing available

12

Modeling Control Flow and Interprocedural Analysis

• Transformation(b) = StoreUpdate(b)
∧

AdditionalConstraints(b)

• Links between blocks: propositional variables

b

pred1 pred2 ... predn
XXXXXXXXXXXz

H
HHH

HHj

��������)

succ1 succ2 ... succm

�����������9

�
���

���

PPPPPPPPq

• Postcondition of a block contains control flow information:

Postcondition(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)

13

Modeling Control Flow and Interprocedural Analysis

• Two techniques for dealing with loops supported:

– Underapproximation — loops are unrolled fixed number

of times

– Overapproximation — unrolled code simulates first m and

last n entries to the loop

• Postcondition of a function — a conjunction of postcondi-

tions of its blocks

• Recursive functions are not supported yet

14

Constructing Correctness Conditions

• Correctness/incorrectness conditions are of the form:

(CC) Context⇒ safe(c)

(IC) Context⇒ ¬safe(c)

• safe(c) — safety condition of an instruction (given by a bug
definition or by an annotation within the code)

• Context is a formula describing context, e.g.:
empty context — a/3;

block context — b=3; b++; a/b;

function context — b=3; if(c>d) b++; a/b;

wider context — int f(int a, int b) {return a/b;}

... f(a, 3) ...

15

Constructing Correctness Conditions

• If ¬CC is UNSAT: c is safe, and it is also safe in all wider

contexts (if it is reachable)

• If ¬IC is UNSAT: c is flawed, and it is also flawed in all wider

contexts (if it is reachable)

• If both ¬CC and ¬IC are UNSAT: the context is inconsistent

so c is unreachable, and it is unreachable in all wider contexts

• If both ¬CC and ¬IC are SAT for some context: c is unsafe;

in some wider context c may have different status

16

Translating Correctness Conditions to SMT Formula

• Integers and operations over integers, one of:
— arbitrary-precision numbers and linear arithmetic (LA)
— finite-precision numbers and bit-vector arithmetic (BVA)

• Functions left and right, one of:
— theory of uninterpreted functions (EUF)
— Ackermannization

• Functions select and store:
— theory of arrays (ARRAYS)

• Several SMT solvers provide support for combinations of the
above theories

17

Agenda

• Motivation and a short overview of the system

• Modeling of programs

• Implementation and preliminary evaluation

• Conclusions

18

Implementation

• The tool LAV is implemented in C++ and open source:

http://argo.matf.bg.ac.rs/?content=lav

• Supported solvers: Boolector (BVA and ARRAYS), Yices

and MathSAT (LA, BVA, EUF) and Z3 (LA, BVA, EUF,

ARRAYS)

• For unsafe and flawed commands, a counterexample which

includes program trace and values of program variables along

this trace is extracted from the model generated by a solver

19

Related Tools

Tool LAV CBMC ESBMC KLEE LLBMC CALYSTO PEX

Frontend LLVM goto-cc goto-cc LLVM LLVM LLVM .NET

- PL - - - - -
LA - LA - - - LA

Theories BV - BV BV BV BV BV
EUF - EUF - - - EUF
ARR. - ARR. ARR. ARR. - ARR.

MathSAT MiniSAT2 CVC STP - Spear -
Solvers Boolector - Boolector - Boolector - -

Z3 - Z3 - Z3 - Z3
Yices - - - - - -

• Other related tools:

CORRAL,S2E,CPAChecker,ESC/JAVA, ...

20

Experimental Comparison

• Limited experimental comparison with KLEE, CBMC and

ESBMC.

• Based on the NECLA static analysis benchmarks (44 out of

57 benchmarks)

• All the tools checked the benchmarks for pointer errors,

buffer overflows, division by zero, and user-defined assertions

21

Experimental Comparison: Results

Tool LAV CBMC ESBMC KLEE

Best times, 45% 2% 0% 47%
default params.
Best times, 0% 22% 56% NA
upp. bound
Best times, 66% 17% 44% NA
unw. bound
Confirmed 0% 1% 7% 2%
missed bugs
False alarms 9% 11% 8% 0%
Tool failure 0% 11% 4% 23%
Timeouts 11% 26% 26% 13%

LAV’s performance is comparable to other tools

22

Application in Education: Experiments

• A tool that could help students and teachers to detect bugs

would be very benefitial

• 157 programs written by students at exams during an intro-

ductory course in programming analyzed

Avg. Avg. Avg.
Problem # Solutions Lines Reported Bugs False Alarms

calculations 60 30 0.82 0.05
arrays and matrices 71 46 4.20 0

strings and structures 26 60 2.92 1.11
Summary 157 42 2.69 0.20

23

Application in Education: Analysis of Results

calculations & strings and structures
arrays and matrices

Most frequent bug buffer overflow null pointer dereferencing
programs with the above bug 81 15
bugs 225 46
Second most frequent bug devision by zero buffer overflow
programs with the abouve bug 22 15
bugs 22 30

• The vast majority of bugs due to wrong expectations e.g.,

that input parameters of programs will meet certain con-

straints

• This explains the large number of bugs in the corpus —

adding only one check in a program would typically eliminate

several bugs

24

Application in Education: One Simplified Student’s Code
line 12: UNSAFE

1: #include<stdio.h> line 18: UNSAFE
2: #include<stdlib.h> line 19: UNSAFE
3: int power(int n) line 20: 12: UNSAFE
4: {
5: int i, pow; function: get_digit
6: for(i=0, pow=1; i<n; i++, pow*=10); error: division_by_zero
7: return pow; line 12: d == 1073741824,
8: }
9: function: main
10: int get_digit(int n, int d) error: buffer_overflow
11: { line 18: argc == 1, argv == 1
12: return (n/power(d))%10;
13: } function: main
14: error: buffer_overflow
15: int main(int argc, char** argv) line 19: argc == 2, argv == 1
16: {
17: int n, d; function: main
18: n = atoi(argv[1]); error: division_by_zero
19: d = atoi(argv[2]); line 20: 12: argc == 512,
20: printf("%d\n", get_digit(n, d)); argv == 1,
21: } d == 1073741824, n == 0

25

Agenda

• Motivation and a short overview of the system

• Modeling of programs

• Implementation and preliminary evaluation

• Conclusions

26

Conclusions

• LAV combines symbolic execution, SAT encoding of pro-

grams behavior and bounded model checking

• LAV’s performance is comparable to other tools (based on a

limited benchmarks)

• Promissing directions for applications in education

27

Thank you

28

Future Work

• Take advantage of LLVM code optimizations

• Further improvement of modeling power and efficiency

• LAVedu — for real world applications in education

29

Modeling Control Flow

Postcondition(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)
EntryCond(b) = activating(b) ∧ initialize(b)

Transformation(b) =
∧
v∈V

(e(b, v) = ev)
∧

AdditionalConstraints(b)

ExitCond(b) = jump(b) ∧ leaving(b)

activating(b) =

 ∨
pred∈Predcesors

transition(pred, b)

⇔ active(b)

initialize(b) =
∧

pred∈Predcesors

transition(pred, b)⇒
∧

v∈Vf

e(pred, v) = s(b, v)


jump(b) =

∧
succi∈Successors

((active(b) ∧ e(b, ci))⇔ transition(b, succi))

leaving(b) = active(b)⇔

(∨
succ∈Successors

transition(b, succ)

)

30

