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Motivation and a Short Overview of the System

• LAV* is a bug-finding tool, it works on the LLVM low-level

intermediate representation

• LAV combines symbolic execution, SAT encoding of pro-

gram’s behavior and bounded model checking

• LAV generates correctness conditions that are passed to a

suitable SMT solver

*LLVM Automated Verifier
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Motivation and a Short Overview of the System — Ex.

0: int main() line 10: UNSAFE
1: {
2: int a0, a1, k, div = 1; function: main
3: if(a0>0) error: division_by_zero
4: a0 = 1; 3: a0 == 0, a1 == 0, div == 1
5: else a0 = -1; 5: a0 == -1, a1 == 0, div == 1
6: if(a1>0) 6: a0 == -1, a1 == 0, div == 1
7: a1 = 1; 8: a0 == -1, a1 == -1, div == 1
8: else a1 = -1; 10: a0 == -1, a1 == -1, div == 0
9: div = a0+a1+2;
10: k = 1/div;
11: }

C code example (left) and LAV output (right)
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Motivation and a Short Overview of the System — Ex.

LAV KLEE
# ifs & # paths bug in bug in bug in bug in
# vars the first the last no the first the last no

path path bug path path bug

2 4 0.07 0.07 0.07 < 1 0.05 0.05
5 32 0.18 0.19 0.18 < 1 0.55 0.55

10 1024 0.41 0.46 0.38 < 1 45.00 45.00
11 2048 0.42 0.54 0.43 < 1 107.00 107.00
12 4096 0.50 0.67 0.50 < 1 268.00 268.00

20 1’048’576 0.73 1.82 0.72 < 1 TO TO

60 260 25.00 39.00 4.18 ≈ 1 TO TO

100 2100 153.00 111.00 15.00 ≈ 1 TO TO

Path Explosion Example
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Instructions, Variables, and Data types

• In LLVM:

– Each program function consists of blocks of instructions,

with no branching and no loops

– Each block can be entered only at its entry point, and left

only through its last command

• In LAV: Block summary, Transformation(b), is constructed

by symbolic execution; it describes the way in which a block

b transforms the store of the program
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Instructions, Variables, and Data types: Instructions

• Each instruction is symbolically executed, it transforms the

store of a program and may add some constraints

code store additional constraints
a b

int a, b; a0 b0 empty
b += a; b0+a0 empty
a = 3; 3 empty

• Values of the variables at the exit point of the block are given

in terms of the values of the variables at the entry point
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Instructions, Variables, and Data types: Pointers

• Buffers — sequences of memory allocated statically or dy-

namically; accessible by a pointer and an offset

• For a pointer p, left(p) and right(p) keep track of numbers

of bytes reserved for the pointer p on its left and its right

code store additional constraints
b p

int b[10], *p; b0 p0 left(b0) = 0 ∧ right(b0) = 40
∧left(p0) = 0 ∧ right(p0) = 0

p = b+3; b0+12 empty
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Instructions, Variables and Data types: Memory

• For accessing memory via pointers: theory of arrays

• Flat memory model is used

• The value of the array mem is also kept in the store

code store additional constraints
mem b p i

int b[10], *p, i; m0 b0 p0 i0 left(b0) = 0 ∧ right(b0) = 40
∧left(p0) = 0 ∧ right(p0) = 0

p = b+3; b0+12

*(p+i) = 5 ; store(m0, b0+12+

buffer overflow? +i0*4, 5)*

*assuming sizeof(int) = 4
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Instructions, Variables and Data types: Example

• *(p+i) introduces a buffer overflow iff

left(p) ≤ i · sizeof(∗p) < right(p) is false

instruction safety condition available
for the instruction constraints

*(p+i) = 5; left(b0) = 0
buffer left(b0 + 12) ≤ i0 · 4 ∧right(b0) = 40
overflow? ∧ ∧left(p0) = 0

i0 · 4 < right(b0 + 12) ∧right(p0) = 0

• Additional constraint (an instance of specific axioms):

left(b0 + 12) = left(b0)− 12∧ right(b0 + 12) = right(b0)− 12
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Instructions, Variables and Data types: Function Calls

• Function calls are modeled according to available information

about the function, one of:

– Contract available

– Definition available

– Nothing available
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Modeling Control Flow and Interprocedural Analysis

• Transformation(b) = StoreUpdate(b)
∧

AdditionalConstraints(b)

• Links between blocks: propositional variables

b
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• Postcondition of a block contains control flow information:

Postcondition(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)
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Modeling Control Flow and Interprocedural Analysis

• Two techniques for dealing with loops supported:

– Underapproximation — loops are unrolled fixed number

of times

– Overapproximation — unrolled code simulates first m and

last n entries to the loop

• Postcondition of a function — a conjunction of postcondi-

tions of its blocks

• Recursive functions are not supported yet
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Constructing Correctness Conditions

• Correctness/incorrectness conditions are of the form:

(CC) Context⇒ safe(c)

(IC) Context⇒ ¬safe(c)

• safe(c) — safety condition of an instruction (given by a bug
definition or by an annotation within the code)

• Context is a formula describing context, e.g.:
empty context — a/3;

block context — b=3; b++; a/b;

function context — b=3; if(c>d) b++; a/b;

wider context — int f(int a, int b) {return a/b;}

... f(a, 3) ...
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Constructing Correctness Conditions

• If ¬CC is UNSAT: c is safe, and it is also safe in all wider

contexts (if it is reachable)

• If ¬IC is UNSAT: c is flawed, and it is also flawed in all wider

contexts (if it is reachable)

• If both ¬CC and ¬IC are UNSAT: the context is inconsistent

so c is unreachable, and it is unreachable in all wider contexts

• If both ¬CC and ¬IC are SAT for some context: c is unsafe;

in some wider context c may have different status
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Translating Correctness Conditions to SMT Formula

• Integers and operations over integers, one of:
— arbitrary-precision numbers and linear arithmetic (LA)
— finite-precision numbers and bit-vector arithmetic (BVA)

• Functions left and right, one of:
— theory of uninterpreted functions (EUF)
— Ackermannization

• Functions select and store:
— theory of arrays (ARRAYS)

• Several SMT solvers provide support for combinations of the
above theories
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Implementation

• The tool LAV is implemented in C++ and open source:

http://argo.matf.bg.ac.rs/?content=lav

• Supported solvers: Boolector (BVA and ARRAYS), Yices

and MathSAT (LA, BVA, EUF) and Z3 (LA, BVA, EUF,

ARRAYS)

• For unsafe and flawed commands, a counterexample which

includes program trace and values of program variables along

this trace is extracted from the model generated by a solver
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Related Tools

Tool LAV CBMC ESBMC KLEE LLBMC CALYSTO PEX

Frontend LLVM goto-cc goto-cc LLVM LLVM LLVM .NET

- PL - - - - -
LA - LA - - - LA

Theories BV - BV BV BV BV BV
EUF - EUF - - - EUF
ARR. - ARR. ARR. ARR. - ARR.

MathSAT MiniSAT2 CVC STP - Spear -
Solvers Boolector - Boolector - Boolector - -

Z3 - Z3 - Z3 - Z3
Yices - - - - - -

• Other related tools:

CORRAL,S2E,CPAChecker,ESC/JAVA, ...
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Experimental Comparison

• Limited experimental comparison with KLEE, CBMC and

ESBMC.

• Based on the NECLA static analysis benchmarks (44 out of

57 benchmarks)

• All the tools checked the benchmarks for pointer errors,

buffer overflows, division by zero, and user-defined assertions
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Experimental Comparison: Results

Tool LAV CBMC ESBMC KLEE

Best times, 45% 2% 0% 47%
default params.
Best times, 0% 22% 56% NA
upp. bound
Best times, 66% 17% 44% NA
unw. bound
Confirmed 0% 1% 7% 2%
missed bugs
False alarms 9% 11% 8% 0%
Tool failure 0% 11% 4% 23%
Timeouts 11% 26% 26% 13%

LAV’s performance is comparable to other tools
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Application in Education: Experiments

• A tool that could help students and teachers to detect bugs

would be very benefitial

• 157 programs written by students at exams during an intro-

ductory course in programming analyzed

Avg. Avg. Avg.
Problem # Solutions Lines Reported Bugs False Alarms

calculations 60 30 0.82 0.05
arrays and matrices 71 46 4.20 0

strings and structures 26 60 2.92 1.11
Summary 157 42 2.69 0.20
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Application in Education: Analysis of Results

calculations & strings and structures
arrays and matrices

Most frequent bug buffer overflow null pointer dereferencing
# programs with the above bug 81 15
# bugs 225 46
Second most frequent bug devision by zero buffer overflow
# programs with the abouve bug 22 15
# bugs 22 30

• The vast majority of bugs due to wrong expectations e.g.,

that input parameters of programs will meet certain con-

straints

• This explains the large number of bugs in the corpus —

adding only one check in a program would typically eliminate

several bugs
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Application in Education: One Simplified Student’s Code
line 12: UNSAFE

1: #include<stdio.h> line 18: UNSAFE
2: #include<stdlib.h> line 19: UNSAFE
3: int power(int n) line 20: 12: UNSAFE
4: {
5: int i, pow; function: get_digit
6: for(i=0, pow=1; i<n; i++, pow*=10); error: division_by_zero
7: return pow; line 12: d == 1073741824,
8: }
9: function: main
10: int get_digit(int n, int d) error: buffer_overflow
11: { line 18: argc == 1, argv == 1
12: return (n/power(d))%10;
13: } function: main
14: error: buffer_overflow
15: int main(int argc, char** argv) line 19: argc == 2, argv == 1
16: {
17: int n, d; function: main
18: n = atoi(argv[1]); error: division_by_zero
19: d = atoi(argv[2]); line 20: 12: argc == 512,
20: printf("%d\n", get_digit(n, d)); argv == 1,
21: } d == 1073741824, n == 0
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Conclusions

• LAV combines symbolic execution, SAT encoding of pro-

grams behavior and bounded model checking

• LAV’s performance is comparable to other tools (based on a

limited benchmarks)

• Promissing directions for applications in education
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Thank you
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Future Work

• Take advantage of LLVM code optimizations

• Further improvement of modeling power and efficiency

• LAVedu — for real world applications in education
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Modeling Control Flow

Postcondition(b) = EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b)
EntryCond(b) = activating(b) ∧ initialize(b)

Transformation(b) =
∧
v∈V

(e(b, v) = ev)
∧

AdditionalConstraints(b)

ExitCond(b) = jump(b) ∧ leaving(b)

activating(b) =

 ∨
pred∈Predcesors

transition(pred, b)

⇔ active(b)

initialize(b) =
∧

pred∈Predcesors

transition(pred, b)⇒
∧

v∈Vf

e(pred, v) = s(b, v)


jump(b) =

∧
succi∈Successors

((active(b) ∧ e(b, ci))⇔ transition(b, succi))

leaving(b) = active(b)⇔

( ∨
succ∈Successors

transition(b, succ)

)
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