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The Main Purposes of GCLC/WinGCLC

e Dynamic geometry tool

e Visualizing geometry (and not only geometry)

e Producing digital mathematical illustrations of high quality

e Use in mathematical education, in studying geometry and as
a research tool



Name of the Game

e Originally, a tool for producing geometrical illustrations for
IATEX, hence the name GCLC:

" Geometry Constructions — IATEX Converter”.



GCLC: History and Releases

e Freely available releases for Windows, Linux

e Available from http://www.matf.bg.ac.yu/ " janicic/gclc and
from EMIS (The European Mathematical Information Ser-
vice) servers http://www.emis.de/misc/index.html

e Hundreds of users worldwide

e First release in 1996, Windows GUI in 2003, theorem prover
built-in in 2006

e Written in C/C++, around 20000 lines of code



GCLC: Basic Principles

e A construction is a formal procedure, not an image

e Producing mathematical illustrations should be based on " de-
scribing figures’”, not on "drawing figures” (similarly as TEX)

e Images can be produced from descriptions, but not vice-
versal

e All instructions are given explicitly, in GCLC language

e GCLC language is like a simple programming language, easily
understandable to mathematicians



Features (part I)

e Support for geometrical constructions: sequences of primi-
tive construction steps performed by ruler and compass

e Support for compound constructions and transformations

e Symbolic expressions, while-loops, user-defined procedures

e Conics, 2D and 3D curves, 3D surfaces

e Built-in theorem prover



Features (part II)

e User-friendly interface, interactive work, animations, traces

e Import from JavaView

e Export to different formats (IATEX, EPS, BMP, SVG)

e Full XML support

e Free, small in size (430Kb—830Kb), easy to use
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GCLC Language (part I)

e Instructions for describing

e Instructions for describing presentation

e All of them are explicit, given within GCLC documents
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GCLC Language (part II)

Basic definitions, constructions, transformations

Drawing, labelling, and printing commands

2D and 3D Cartesian commands

Symbolic expressions, loops, user-defined procedures

Commands for describing animations

Commands for the geometry theorem prover
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Simple Example (part I)

% labelling points
cmark_1b A
cmark_rb B
cmark_rt C
cmark_1t 0_1
cmark_rt 0_2

% fixed points
point A 15 20
point B 80 10
point C 70 90

% side bisectors

med a B C
med b A C %» drawing the sides of the triangle ABC
med c B A drawsegment A B

drawsegment A C
%» intersections of bisectors drawsegment B C
intersection 0_1 a b
intersection 0_2 a c % drawing the circumcircle of the triangle

drawcircle 0_1 A
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Simple Example (part II)
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Samples
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WinGCLC Screenshot
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Built-in Theorem Prover

e Joint work with Pedro Quaresma, University of Coimbra

e Based on the area method (Chou et. al., mid 90's)

e Produces synthetic, coordinate-free, traditional, human-readable
proofs

e Proofs generated in IATEX with explanations for each step

e T he prover tightly integrated into GCLC
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Properties of the Area Method

e Wide realm, covers many non-trivial theorems
e Efficient for many non-trivial theorems

e Conjectures expressed in terms of equalities over geome-
try quantities — e.g., signed area of a triangle (S 4pc~) and
Pythagoras difference (Pip~ = AB?2 + CB?2 — AC?)

e Current expression is transformed step by step, by different
simplifications
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All Proof Steps Are EXxplicit

e Elimination steps (elimination of constructed points in re-
verse order, by using appropriate lemmas)

e Algebraic simplifications (e.g., z + 0 — =, —I—% x°v+u'y)

T
Y y-v
e Geometric simplifications (e.g., Paan — O, Sapc — Sca)

e Proofs given in layers
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Algebraic Simplifications

e Stand alone system

e Based on (around 40) rewrite rules (divided and applied in
20 groups)

e Simplification is sound and terminating. It leads to equalities
of the form:

CLl’l~a1’2-...-a1’n1—|—...—|—am71-am,z-...-am’nm:
— bl,l'b1,2'°°°'b1,k1+"'+bl,1'bl,Q'“"bl,kl

... and, finally, given a;. and bi’j are independent values, the
above form simplifies to true or false

20



Using the Theorem Prover

e For the given example, points 0_1 and 0_2 are identical. This
can be stated as follows

prove { identical 0_1 0_2 }

or

prove { equal
{ pythagoras_difference3 0_1 0_2 0_1 }
{01}
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Fragment of the Proof
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Experimental Results

Theorem Name elim.steps | geom.steps | alg.steps time
Ceva 3 6 23 0.001s
Gauss line 14 51 234 0.029s
Thales 6 18 34 0.001s
Menelaus 5 9 39 0.002s
Midpoint 3 19 45 0.002s
Pappus’ Hexagon 24 65 269 0.040s
Ratio of Areas of Par- 62 152 582 0.190s
allelograms

Triangle Circumcircle 50 104 43 0.028s
Distance of a line con- 274 673 3196 8.364s

taining the centroid to
the vertices
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One Application of the Theorem Prover:
Automatic Verification of Regular Constructions

e [ he system for automated testing whether a construction is
regular or illegal

e For instance — constructing a line | determined by (identical
points) O1 and O»> from the above example is not a regular
construction step

e [est is made by the theorem prover and the argument is
given as a synthetic proof (the only such geometry tool?)
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Invoking Automatic Verification of Regular Constructions

e Above example: constructing a line [ determined by (identical
points) O1 and O» is not a regular construction step

® Error 14: Run-time error: Bad definition. Can not determine
intersection. (Line: 26, position: 10) File not processed.

Deduction check invoked: the property that led to the error
will be tested for wvalidity.

Total number of proof steps: 18

Time spent by the prover: 0.001 seconds
The conjecture successfully proved - the critical property always holds.
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Processing Descriptions of Constructions

e Syntactical check

e Semantical check (e.g., whether two concrete points deter-
mine a line)

e Deductive check, thanks to the verification mechanism (e.g., whether
two constructed points never determine a line)

26



Roadmap

e GeoThms System and XML support

27



GeoT hms

e Main author: Pedro Quaresma (University of Coimbra)

e An Internet framework that links dynamic geometry software
(GCLC, Eukleides), geometry theorem provers (GCLCprover),
and a repository of geometry problems (geoDB)

e A user can easily browse through the list of geometric prob-
lems, their statements, illustrations and proofs

e http://hilbert.mat.uc.pt/ geothms
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GeoThms Screenshot
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XML Support

e Format for descriptions of constructions and proofs

e Potentially common interchange format for different tools for
geometrical constructions (one additional theorem prover by
other authors already added to GeoThms)

e Web presentation, in different forms (e.g., natural language
form).
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Construction in XML form
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Proof in XML form
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Related Systems

e Dynamic geometry tools: Cinderella, Geometer's Sketchpad,
Eukleides, Cabri, JavaView, KSEG, ...

e Tools with geometry theorem provers: GEX, GeoTher, Ge-
ometry Explorer, Theorema, Coq, MMP Geometer

e Repositories of geometrical problems: geometriagon
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As a Conclusion: Main Applications

e Producing digital mathematical illustrations

e Storing mathematical contents

e Mathematical education

e GeoThms: a major Internet resource for geometrical prob-
lems
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Further Work

e Support for additional mathematical objects (e.g., graphs
and flowcharts), leading to a general-purpose mathematical
illustration tool

e Additional automated reasoners (not only geometrical)

e Enabling moving along/packing/unpacking parts of proofs

e Additional options for interactive work, especially developing
automatic tutors

e Import from printed and hand-made constructions
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