GCLC — A Tool for Constructive Euclidean Geometry and More than That

Predrag Janičić Faculty of Mathematics University of Belgrade

International Congress of Mathematical Software Castro Urdiales, Spain, September 1–3, 2006.

Roadmap

- Purposes, History, Basic Principles, Features
- GCLC Language and Samples
- Theorem Prover and Deduction Control
- GeoThms System and XML support
- Related Systems, Conclusions and Future Work

Roadmap

- Purposes, History, Basic Principles, Features
- GCLC Language and Samples
- Theorem Prover and Deduction Control
- GeoThms System and XML support
- Related Systems, Conclusions and Future Work

The Main Purposes of GCLC/WinGCLC

- Dynamic geometry tool
- Visualizing geometry (and not only geometry)
- Producing digital mathematical illustrations of high quality
- Use in mathematical education, in studying geometry and as a research tool

Name of the Game

• Originally, a tool for producing geometrical illustrations for LAT_EX , hence the name GCLC:

"Geometry Constructions \rightarrow LAT_EX Converter".

GCLC: History and Releases

- Freely available releases for Windows, Linux
- Available from http://www.matf.bg.ac.yu/~janicic/gclc and from EMIS (The European Mathematical Information Service) servers http://www.emis.de/misc/index.html
- Hundreds of users worldwide
- First release in 1996, Windows GUI in 2003, theorem prover built-in in 2006
- Written in C/C++, around 20000 lines of code

GCLC: Basic Principles

- A construction is a formal procedure, not an image
- Producing mathematical illustrations should be based on "describing figures", not on "drawing figures" (similarly as T_EX)
- Images can be produced from descriptions, but not viceversa!
- All instructions are given explicitly, in GCLC language
- GCLC language is like a simple programming language, easily understandable to mathematicians

Features (part I)

- Support for geometrical constructions: sequences of primitive construction steps performed by ruler and compass
- Support for compound constructions and transformations
- Symbolic expressions, while-loops, user-defined procedures
- Conics, 2D and 3D curves, 3D surfaces
- Built-in theorem prover

Features (part II)

- User-friendly interface, interactive work, animations, traces
- Import from JavaView
- Export to different formats (LAT_EX, EPS, BMP, SVG)
- Full XML support
- Free, small in size (430Kb-830Kb), easy to use

Roadmap

- Purposes, History, Basic Principles, Features
- GCLC Language and Samples
- Theorem Prover and Deduction Control
- GeoThms System and XML support
- Related Systems, Conclusions and Future Work

GCLC Language (part I)

- Instructions for describing content
- Instructions for describing **presentation**
- All of them are explicit, given within GCLC documents

GCLC Language (part II)

- Basic definitions, constructions, transformations
- Drawing, labelling, and printing commands
- 2D and 3D Cartesian commands
- Symbolic expressions, loops, user-defined procedures
- Commands for describing animations
- Commands for the geometry theorem prover

Simple Example (part I)

```
% fixed points
point A 15 20
point B 80 10
point C 70 90
```

```
% side bisectors
med a B C
med b A C
med c B A
```

```
\% intersections of bisectors intersection O_1 a b intersection O_2 a c
```

```
% labelling points
cmark_lb A
cmark_rb B
cmark_rt C
cmark_lt O_1
cmark_rt O_2
% drawing the sides of the triangle ABC
drawsegment A B
drawsegment A C
drawsegment B C
% drawing the circumcircle of the triangle
drawcircle O_1 A
```

Simple Example (part II)

Samples

14

WinGCLC Screenshot

Roadmap

- Purposes, History, Basic Principles, Features
- GCLC Language and Samples
- Theorem Prover and Deduction Control
- GeoThms System and XML support
- Related Systems, Conclusions and Future Work

Built-in Theorem Prover

- Joint work with Pedro Quaresma, University of Coimbra
- Based on the area method (Chou et. al., mid 90's)
- Produces synthetic, coordinate-free, traditional, human-readable proofs
- Proofs generated in LAT_EX with explanations for each step
- The prover tightly integrated into GCLC

Properties of the Area Method

- Wide realm, covers many non-trivial theorems
- Efficient for many non-trivial theorems
- Conjectures expressed in terms of equalities over geometry quantities e.g., signed area of a triangle (S_{ABC}) and Pythagoras difference $(P_{ABC} = AB^2 + CB^2 AC^2)$
- Current expression is transformed step by step, by different simplifications

All Proof Steps Are Explicit

- Elimination steps (elimination of constructed points in reverse order, by using appropriate lemmas)
- Algebraic simplifications (e.g., $x + 0 \rightarrow x$, $\frac{x}{y} + \frac{u}{v} \rightarrow \frac{x \cdot v + u \cdot y}{y \cdot v}$)
- Geometric simplifications (e.g., $P_{AAB} \rightarrow 0$, $S_{ABC} \rightarrow S_{BCA}$)
- Proofs given in layers

Algebraic Simplifications

- Stand alone system
- Based on (around 40) rewrite rules (divided and applied in 20 groups)
- Simplification is sound and terminating. It leads to equalities of the form:

 $a_{1,1} \cdot a_{1,2} \cdot \ldots \cdot a_{1,n_1} + \ldots + a_{m,1} \cdot a_{m,2} \cdot \ldots \cdot a_{m,n_m} = b_{1,1} \cdot b_{1,2} \cdot \ldots \cdot b_{1,k_1} + \ldots + b_{l,1} \cdot b_{l,2} \cdot \ldots \cdot b_{l,k_l}$

... and, finally, given $a_{i,j}$ and $b_{i,j}$ are independent values, the above form simplifies to *true* or *false*

Using the Theorem Prover

• For the given example, points 0_1 and 0_2 are identical. This can be stated as follows

prove { identical 0_1 0_2 }

```
or
```

Fragment of the Proof

(113)
$$(0.062500 \cdot (P_{CBC} \cdot S_{BAC})) = \left(\frac{1}{4} \cdot \left(P_{CBM_a^0} \cdot S_{BAM_a^0}\right)\right) , \text{ by algebraic simplifications}$$

(114)
$$(0.062500 \cdot (P_{CBC} \cdot S_{BAC})) = \left(\frac{1}{4} \cdot \left(\left(P_{CBB} + \left(\frac{1}{2} \cdot (P_{CBC} + (-1 \cdot P_{CBB}))\right)\right) + S_{BAM_a^0}\right)\right) ,$$

(115)
$$(0.062500 \cdot (P_{CBC} \cdot S_{BAC})) = \left(\frac{1}{4} \cdot \left(\left(0 + \left(\frac{1}{2} \cdot (P_{CBC} + (-1 \cdot 0))\right)\right) \cdot S_{BAM_a^0}\right)\right)$$

 $(0.062500 \cdot S_{BAC}) = \left(\frac{1}{8} \cdot S_{BAM_a^0}\right)$

, by geometric simplifications

by Lemma 29 (point M_a^0 eliminated)

, by Lemma 29 (point
$$M_a^0$$
 eliminated)

22

(117) $(0.062500 \cdot S_{BAC}) = \left(\frac{1}{8} \cdot \left(S_{BAB} + \left(\frac{1}{2} \cdot (S_{BAC} + (-1 \cdot S_{BAB}))\right)\right)\right)$

 $\mathbf{28}$

(116)

(118) $(0.062500 \cdot S_{BAC}) = \left(\frac{1}{8} \cdot \left(0 + \left(\frac{1}{2} \cdot (S_{BAC} + (-1 \cdot 0))\right)\right)\right)$

(119) 0 = 0

Experimental Results

Theorem Name	elim.steps	geom.steps	alg.steps	time
Ceva	3	6	23	0.001s
Gauss line	14	51	234	0.029s
Thales	6	18	34	0.001s
Menelaus	5	9	39	0.002s
Midpoint	8	19	45	0.002s
Pappus' Hexagon	24	65	269	0.040s
Ratio of Areas of Par-	62	152	582	0.190s
allelograms				
Triangle Circumcircle	50	104	43	0.028s
Distance of a line con-	274	673	3196	8.364s
taining the centroid to				
the vertices				

One Application of the Theorem Prover: Automatic Verification of Regular Constructions

- The system for automated testing whether a construction is regular or illegal
- For instance constructing a line l determined by (identical points) O_1 and O_2 from the above example is not a regular construction step
- Test is made by the theorem prover and the argument is given as a synthetic proof (the only such geometry tool?)

Invoking Automatic Verification of Regular Constructions

- Above example: constructing a line l determined by (identical points) O_1 and O_2 is not a regular construction step
- Error 14: Run-time error: Bad definition. Can not determine intersection. (Line: 26, position: 10) File not processed.

Deduction check invoked: the property that led to the error will be tested for validity.

Total number of proof steps: 18

Time spent by the prover: 0.001 seconds The conjecture successfully proved - the critical property always holds. **Processing Descriptions of Constructions**

- Syntactical check
- Semantical check (e.g., whether two concrete points determine a line)
- Deductive check, thanks to the verification mechanism (e.g., whether two constructed points never determine a line)

Roadmap

- Purposes, History, Basic Principles, Features
- GCLC Language and Samples
- Theorem Prover and Deduction Control
- GeoThms System and XML support
- Related Systems, Conclusions and Future Work

GeoThms

- Main author: Pedro Quaresma (University of Coimbra)
- An Internet framework that links dynamic geometry software (GCLC, Eukleides), geometry theorem provers (GCLCprover), and a repository of geometry problems (geoDB)
- A user can easily browse through the list of geometric problems, their statements, illustrations and proofs
- http://hilbert.mat.uc.pt/~geothms

GeoThms Screenshot

👻 🌑 🕒 GeoThms - Geometry Framework - Mozilla Firefox 💦 📃 🔳						
Eicheiro Editar Ver Ir Marcadores Ferramentas Ajuda						
💠 • 🍌 • 🎒 🔕 🕎 🚔 🎝 🗋 http://hilbert.mat.uc.pt/~geothms/Forms/formGeoThm.php?argumento=GE00002 🔽 🖉 Ir 🔎						
🗋 Livros - LivrosdeInter						
Geometric theorem's keport						
	Geometric Theorem Info					
Name of the Theorem	Gauss-line Theorem		Theorem's Id GE00002			
Name (who submitted)	Pedro Quaresma	Email	pedro@mat.uc.pt			
Bibliographic References	References [ZCG95] Jing-Zhong Zhang, Shang-Ching Chou, and Xiao-Shan Gao, Automated production of traditional proofs for theorems in euclidean geometry i. the hilbert intersection point theorems. Annals of Mathematics and Artificial Intelligenze, 13:109–137, 1995.					
Category	Geometry	Date of Submission	2006-02-07			
Description	Theorem 1 (Gauss-line Theorem) Let A_0 , A_1 , A_2 , and A_3 be four points on a plane, X the intersection of A_1A_2 and A_0A_3 , and Y the intersection of A_0A_1 and A_2A_3 . Let M_1 , M_2 , and M_3 be the midpoints of A_1A_3 , A_0A_2 and XY, respectively, then M_1 , M_2 , and M_3 are collinear.					
	Gauss-line Theo	orem Figure Info				
Drawer Name	GCLC	Drawer Version	5.00			
Date of Submission	2006-02-07	Bibliographic Reference Zhang95				
Name (who submitted)	Pedro Quaresma	Electronic address pedro@mat.uc.pt				
Figure						
	Gauss-line Theo	rem Proofs Info				
Prover Name	GCLC	Prover Version	1.0			
Date of Submission	2006-04-06	Bibliographic Reference	Zhang95			
Name (who submitted)	Pedro Quaresma	Electronic address	pedro@mat.uc.pt			
Proof Status Proved	Proof (PDF file)	Gauss-line Theorem proof				
Terminode	Measures o	fefficiency				
renninado						

XML Support

- Format for descriptions of constructions and proofs
- Potentially common interchange format for different tools for geometrical constructions (one additional theorem prover by other authors already added to GeoThms)
- Web presentation, in different forms (e.g., natural language form).

Construction in XML form

Description of construction:
Let us define the following fixed points:
 Let PI be a point with Cartesian coordinates (5.000000, 5.000000). Let P3 be a point with Cartesian coordinates (125.000000, 125.000000).
Let us draw the following objects:
 Visible area: left-bottom corner (5.000000, 5.000000), right-top corner (125.000000, 125.000000).
Let us define the following fixed points:
 Let P2 be a point with Cartesian coordinates (125.000000, 5.000000). Let P4 be a point with Cartesian coordinates (5.000000, 125.000000).
Let us draw (using dashed style) the following objects:
 The segment with endpoints P1 and P2. The segment with endpoints P2 and P3. The segment with endpoints P3 and P4. The segment with endpoints P4 and P1.
Let us define the following fixed points:
 Let B be a point with Cartesian coordinates (35.000000, 60.000000). Let C be a point with Cartesian coordinates (65.000000, 60.000000). Let A be a point with Cartesian coordinates (40.000000, 80.000000).
Let us construct the following objects:

Proof in XML form

step 1	
(3.000000) * (s4(A, B,	C, D)) = (13.000000) * (s3(A, B, A_2))
the statement	
Semantic values: 4500.0	30000 + 4500.000865
Step 2	
(3.000000) * (s4(A, B, B_1)))	C, D)) = (13.000000) * (((s3(A, B, B_1)) * (s3(A, B, A_1))) + ((-1.000000) * ((s3(A_1, B, B_1)) * (s3(A, B, A))))) / (s4(A, B, A_1))
Lemma 30 (point \$A_2\$ 4	iminated)
Semantic values: 4500.0	30000 + 4500.000865
Step 3	
(3.000000) * (\$4(A, B, B_1)))	C, D)) = (12.000000) * ((((s3(A, B, B_1)) * (s3(A, B, A_1))) + ((-1.000000) * ((s3(A_1, B, B_1)) * (0.000000)))) / (s4(A, B, A_1, B_1)) * (0.000000)))) / (s4(A, B, A_1, B_1)) * (s3(A, B, A_1)) * (s3(A, B, A_1))) * (s3(A,
Lemma 2 (equal)	
Semantic values: 4500.0	30000 = 4500.000865
Stop 4	
(3.000000) * (s4(A, B,	C, D)) = (13.000000) * (((s3(A, B, B_1)) * (s3(A, B, A_1))) + ((-1.000000) * (0.000000))) / (s4(A, B, A_1, B_1)))
multiplication by 0	
Semantic values: 4500.0	00000 = 4500.000865
Step 5	
(3.000000) * (s4(A, B,	C, D)) = (13.000000) * (((s3(A, B, B_1)) * (s3(A, B, A_1))) + (0.000000)) / (s4(A, B, A_1, B_1)))
multiplication by 0	
Semantic values: 4500.0	0000 + 4500.000865

Roadmap

- Purposes, History, Basic Principles, Features
- GCLC Language and Samples
- Theorem Prover and Deduction Control
- GeoThms System and XML support
- Related Systems, Conclusions and Future Work

Related Systems

- Dynamic geometry tools: Cinderella, Geometer's Sketchpad, Eukleides, Cabri, JavaView, KSEG, ...
- Tools with geometry theorem provers: GEX, GeoTher, Geometry Explorer, Theorema, Coq, MMP Geometer
- Repositories of geometrical problems: geometriagon

As a Conclusion: Main Applications

- Producing digital mathematical illustrations
- Storing mathematical contents
- Mathematical education
- GeoThms: a major Internet resource for geometrical problems

Further Work

- Support for additional mathematical objects (e.g., graphs and flowcharts), leading to a general-purpose mathematical illustration tool
- Additional automated reasoners (not only geometrical)
- Enabling moving along/packing/unpacking parts of proofs
- Additional options for interactive work, especially developing automatic tutors
- Import from printed and hand-made constructions