
Automatic Synthesis of Decision

Procedures: a Case Study of Ground and

Linear Arithmetic

Predrag Janičić

Faculty of Mathematics, University of Belgrade

and

Alan Bundy

School of Informatics, University of Edinburgh

Calculemus 2007, RISC, Hagenberg, Austria, June 27–29,

2007.

Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

1

Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

2

Decision Procedures

• f is a decision procedure for a theory T if for any formula F

it can tell whether or not T ` F

• Many decision procedures available for many theories, also
many combination schemes; often vital in theorem proving,
explored in the context of SMT

• Difficult to develop and prone to implementation flaws, so
automatic synthesis would be welcome

• Automatic synthesis would be important also for newly de-
fined theories

3

Bundy’s programme (1991) — Basic ideas

• Many steps in decision procedures and normalisation proce-

dures are routine, often based on rewriting

• There are some families/kinds of such steps (e.g., remove,

stratify, etc.)

• Many decision procedures are based on quantifier elimination

• The routine tasks in building decision procedures can be au-

tomated

4

Bundy’s programme (1991) — Example

A stratify method can, by using the rules:

st_conj_disj1: f1 ∧ (f2 ∨ f3) −→ (f1 ∧ f2) ∨ (f1 ∧ f3)
st_conj_disj2: (f2 ∨ f3) ∧ f1 −→ (f2 ∧ f1) ∨ (f3 ∧ f1)

transform a formula of the class

f := af |f ∨ f |f ∧ f

into a formula of the (new) class f :

f := f ′|f ∨ f
f ′ := af |f ′ ∧ f ′

5

Bundy’s programme (1991) — Further Steps

• Given several generated methods, it should be possible to
combine these methods (automatically) into a compound
method or, sometimes, into a DP for some theory

• For some normalisations and DPs successive rewritings are
required; one is not enough (e.g., CNF)

• Methods (and compound methods) will be designed in such
a way that their properties can be easily proved

• Building methods may require human assistance

6

Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

7

Method Generators

• Given an input BNF, a method kind, and rewrite rules, a

method generator generates the output BNF and the corre-

sponding method (in the spirit of proof planning)

• Normalisation methods are based on exhaustive application

of rewrite rules. They transform formulae from one set to

another set (e.g., into prenex normal form, DNF)

• Special-purpose method generators generate theory specific

methods

8

Method Generators — Basic Normalisation Methods

• We implemented generators for several kinds of methods:

– Remove for eliminating a certain symbol

– Stratify for stratifying one syntactical class into two layers
containing just some specific symbols

– Thin for eliminating multiple occurrences of a unary sym-
bol (e.g., elimination of multiple negations, by ¬¬x −→ x)

– Absorb for eliminating some recursion rules (e.g., t ::=
t · real num|real num transforms to t ::= real num)

– Left-assoc for reorganising within a class (e.g., for ∧)

9

Method Generators — Special Purpose Generators

• Not of syntactical nature, theory specific (e.g., for linear

arithmetic, generating a method for “cross-multiply-and-add”)

• We implemented the following special-purpose generators:

– for adjusting the innermost quantifier;

– for generating one-side methods;

– for isolating a variable;

– for removing a variable.

10

Method Generators — Properties of Generated Methods

• Termination, soundness, completeness, are easily proved (from

construction of the methods; of course, rewrite rules should

be “sensible” w.r.t. the background theory (i.e., sound and

complete))

• Slightly more difficult is some of the rewrite rules are con-

ditional (some of the required statements can be proved by

the generated procedures themselves)

11

Method Generators — Compound Method Generator

• Given method generators, an initial BNF and a set of rewrite
rules, the initial BNF can be transformed step by step, yield-
ing a sequence of methods (and BNFs), and reaching some
goal BNF (e.g., a trivial one — consisting of ⊥ and >)

• The automated search engine

– starts with the full BNF for a given theory

– searches over all method generators and with all possible
instantiations (arguments)

– searches for a goal BNF

12

Method Generators — Compound Method Generator (2)

• Properties of this search engine:

– search space is much smaller than if we searched over

rewrite rules

– the search is directed (and termination ensured) by a spe-

cific decreasing measure on the sequence of BNFs

– the completeness can be ensured by iterative deepening

– everything implemented in PROLOG in a system called

ADEPTUS

13

Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

14

Ground arithmetic

• Ground arithmetic — no variables:

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f
af := >|⊥|t = t|t < t|t > t|t ≤ t|t ≥ t|t 6= t

t := rc| − t|t · t|t + t

• We searched (over 59 necessary rewrite rules) for a com-

pound method that can transform any formula into a formula

described by: f := >|⊥

• The search algorithm took 3s; during that 48 methods were

successfully generated, 22 of them in the final sequence

15

Ground arithmetic — Generated Decision Procedure

1. remove ⇔ 12. stratify [+]
2. remove ⇒ 13. left assoc ∨
3. remove ≤ 14. left assoc +
4. remove ≥ 15. left assoc ∗
5. remove 6= 16. absorb ∗
6. remove > 17. absorb +
7. remove − 18. remove <
8. stratify [∧,∨] 19. remove =
9. thin ¬ 20. left assoc ∧

10. remove ¬ 21. remove ∧
11. stratify [∨] 22. remove ∨

16

Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

17

Linear arithmetic

• Only addition (no multiplication, except multiplication by
constants)

• Implementation prone to human flaws

• We searched (over 71 necessary rewrite rules) for a com-
pound method that can transform any formula into a formula
described by: f := >|⊥

• The search algorithm took 5s; only 89 methods successfully
generated, 51 of them in the final sequence — a Fourier-
Motzkin-style procedure.

18

Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

19

Further Work

• Given an input BNF and a set of rewrite rules compute the

output BNF (without having method generators)

• The output is not always definable by BNF (i.e., by a context-

free grammar)

• This is subject of our current research

20

Conclusions

• Automatic/semi-automatic synthesis of DPs is possible

• While most of the approach is automated, some human as-

sistance is required (for special-purpose method generators)

• All necessary rewrite rules have to be provided (the system

complains if there are missing rules)

21

Conclusions (2)

• Formal properties of generated DPs are easily proved

• Reduced risk of human implementation flaws

• Synthesised procedures are structured and understandable to

humans; rewrite rules are applied in stages

• The full system is implemented (ADEPTUS) and tested

22

23

Linear arithmetic (over reals) and Fourier/Motzkin’s pro-
cedures

• uses series of transformations:

– put the given formula into prenex normal form

– eliminate ⇒

– put into disjunctive normal form, etc.

• “cross multiply and add step” (simplified):

(∃x)(a < bx ∧ cx < d) (b, c > 0)

ac < bd

24

Proof planning and methods

• higher level reasoning

• methods are specification of tactics

• tactics give object level proofs

• a method has several slots: a name, input, preconditions,
effect, output, postconditions and the name of the attached
tactic.

• give structured proof-plans, understandable to humans

25

Proof planning and methods

• rewrite rules should be “sensible” w.r.t. the background the-

ory (i.e., sound and complete); can be derived directly from

axioms or from higher level statements

• example (for linear arithmetic):

(t1 ≥ t2) −→ (t2 < t1 ∨ t1 = t2)

26

Other Examples

• For fragments of the Area method for geometry

• For producing object level proofs for the SAT problem

27

