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Faculty of Mathematics, University of Belgrade

and

Alan Bundy

School of Informatics, University of Edinburgh

Calculemus 2007, RISC, Hagenberg, Austria, June 27–29,

2007.



Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

1



Roadmap

• Decision Procedures and Bundy’s Programme

• Method Generators

• Case Study: Ground Arithmetic

• Case Study: Linear Arithmetic

• Further Work and Conclusions

2



Decision Procedures

• f is a decision procedure for a theory T if for any formula F

it can tell whether or not T ` F

• Many decision procedures available for many theories, also
many combination schemes; often vital in theorem proving,
explored in the context of SMT

• Difficult to develop and prone to implementation flaws, so
automatic synthesis would be welcome

• Automatic synthesis would be important also for newly de-
fined theories
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Bundy’s programme (1991) — Basic ideas

• Many steps in decision procedures and normalisation proce-

dures are routine, often based on rewriting

• There are some families/kinds of such steps (e.g., remove,

stratify, etc.)

• Many decision procedures are based on quantifier elimination

• The routine tasks in building decision procedures can be au-

tomated
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Bundy’s programme (1991) — Example

A stratify method can, by using the rules:

st_conj_disj1: f1 ∧ (f2 ∨ f3) −→ (f1 ∧ f2) ∨ (f1 ∧ f3)
st_conj_disj2: (f2 ∨ f3) ∧ f1 −→ (f2 ∧ f1) ∨ (f3 ∧ f1)

transform a formula of the class

f := af |f ∨ f |f ∧ f

into a formula of the (new) class f :

f := f ′|f ∨ f
f ′ := af |f ′ ∧ f ′
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Bundy’s programme (1991) — Further Steps

• Given several generated methods, it should be possible to
combine these methods (automatically) into a compound
method or, sometimes, into a DP for some theory

• For some normalisations and DPs successive rewritings are
required; one is not enough (e.g., CNF)

• Methods (and compound methods) will be designed in such
a way that their properties can be easily proved

• Building methods may require human assistance
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Method Generators

• Given an input BNF, a method kind, and rewrite rules, a

method generator generates the output BNF and the corre-

sponding method (in the spirit of proof planning)

• Normalisation methods are based on exhaustive application

of rewrite rules. They transform formulae from one set to

another set (e.g., into prenex normal form, DNF)

• Special-purpose method generators generate theory specific

methods
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Method Generators — Basic Normalisation Methods

• We implemented generators for several kinds of methods:

– Remove for eliminating a certain symbol

– Stratify for stratifying one syntactical class into two layers
containing just some specific symbols

– Thin for eliminating multiple occurrences of a unary sym-
bol (e.g., elimination of multiple negations, by ¬¬x −→ x)

– Absorb for eliminating some recursion rules (e.g., t ::=
t · real num|real num transforms to t ::= real num)

– Left-assoc for reorganising within a class (e.g., for ∧)

9



Method Generators — Special Purpose Generators

• Not of syntactical nature, theory specific (e.g., for linear

arithmetic, generating a method for “cross-multiply-and-add”)

• We implemented the following special-purpose generators:

– for adjusting the innermost quantifier;

– for generating one-side methods;

– for isolating a variable;

– for removing a variable.
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Method Generators — Properties of Generated Methods

• Termination, soundness, completeness, are easily proved (from

construction of the methods; of course, rewrite rules should

be “sensible” w.r.t. the background theory (i.e., sound and

complete))

• Slightly more difficult is some of the rewrite rules are con-

ditional (some of the required statements can be proved by

the generated procedures themselves)
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Method Generators — Compound Method Generator

• Given method generators, an initial BNF and a set of rewrite
rules, the initial BNF can be transformed step by step, yield-
ing a sequence of methods (and BNFs), and reaching some
goal BNF (e.g., a trivial one — consisting of ⊥ and >)

• The automated search engine

– starts with the full BNF for a given theory

– searches over all method generators and with all possible
instantiations (arguments)

– searches for a goal BNF
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Method Generators — Compound Method Generator (2)

• Properties of this search engine:

– search space is much smaller than if we searched over

rewrite rules

– the search is directed (and termination ensured) by a spe-

cific decreasing measure on the sequence of BNFs

– the completeness can be ensured by iterative deepening

– everything implemented in PROLOG in a system called

ADEPTUS
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Ground arithmetic

• Ground arithmetic — no variables:

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f
af := >|⊥|t = t|t < t|t > t|t ≤ t|t ≥ t|t 6= t

t := rc| − t|t · t|t + t

• We searched (over 59 necessary rewrite rules) for a com-

pound method that can transform any formula into a formula

described by: f := >|⊥

• The search algorithm took 3s; during that 48 methods were

successfully generated, 22 of them in the final sequence
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Ground arithmetic — Generated Decision Procedure

1. remove ⇔ 12. stratify [+]
2. remove ⇒ 13. left assoc ∨
3. remove ≤ 14. left assoc +
4. remove ≥ 15. left assoc ∗
5. remove 6= 16. absorb ∗
6. remove > 17. absorb +
7. remove − 18. remove <
8. stratify [∧,∨] 19. remove =
9. thin ¬ 20. left assoc ∧

10. remove ¬ 21. remove ∧
11. stratify [∨] 22. remove ∨
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Linear arithmetic

• Only addition (no multiplication, except multiplication by
constants)

• Implementation prone to human flaws

• We searched (over 71 necessary rewrite rules) for a com-
pound method that can transform any formula into a formula
described by: f := >|⊥

• The search algorithm took 5s; only 89 methods successfully
generated, 51 of them in the final sequence — a Fourier-
Motzkin-style procedure.
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Further Work

• Given an input BNF and a set of rewrite rules compute the

output BNF (without having method generators)

• The output is not always definable by BNF (i.e., by a context-

free grammar)

• This is subject of our current research
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Conclusions

• Automatic/semi-automatic synthesis of DPs is possible

• While most of the approach is automated, some human as-

sistance is required (for special-purpose method generators)

• All necessary rewrite rules have to be provided (the system

complains if there are missing rules)
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Conclusions (2)

• Formal properties of generated DPs are easily proved

• Reduced risk of human implementation flaws

• Synthesised procedures are structured and understandable to

humans; rewrite rules are applied in stages

• The full system is implemented (ADEPTUS) and tested
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Linear arithmetic (over reals) and Fourier/Motzkin’s pro-
cedures

• uses series of transformations:

– put the given formula into prenex normal form

– eliminate ⇒

– put into disjunctive normal form, etc.

• “cross multiply and add step” (simplified):

(∃x)(a < bx ∧ cx < d) (b, c > 0)

ac < bd
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Proof planning and methods

• higher level reasoning

• methods are specification of tactics

• tactics give object level proofs

• a method has several slots: a name, input, preconditions,
effect, output, postconditions and the name of the attached
tactic.

• give structured proof-plans, understandable to humans
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Proof planning and methods

• rewrite rules should be “sensible” w.r.t. the background the-

ory (i.e., sound and complete); can be derived directly from

axioms or from higher level statements

• example (for linear arithmetic):

(t1 ≥ t2) −→ (t2 < t1 ∨ t1 = t2)
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Other Examples

• For fragments of the Area method for geometry

• For producing object level proofs for the SAT problem
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