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Today’s Agenda

• Predrag: Dynamic Geometrical Software and GCLC

• Predrag: Automated Theorem Proving in Geometry

• Pedro: GeoThms – A Repository of Geometrical Construc-
tions

• Vesna & Sana: Formalization and Automation of Euclidean
Geometry

• Predrag & Vesna & Sana: GCLC Lab Session
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A Few Words about the ARGO Group

• The name and the game: Automated Reasoning GrOup

• Research interests: automated theorem proving and formal

theorem proving, with emphasis on SAT and SMT solving,

geometrical reasoning and their applications.

• URL: http://argo.matf.bg.ac.yu/

• Come to our seminar!
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First Lecture:
Dynamic Geometrical Software and GCLC
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Agenda

• What is dynamic geometry software?

• What are the DG tools?

• What is GCLC?

• Brief tutorial on GCLC
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What is Dynamic Geometry Software?

• Interactive geometry software or Dynamic geometry software

or Dynamic geometry environments or Dynamic geometry

tools

• DG tools allow the user ”to create and then manipulate ge-

ometric constructions, primarily in plane geometry”.

• The user typically starts a construction with a few points,

construct new objects, and then can move the points to see

how the construction changes.
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What Good is Dynamic Geometry Software?

• Fun and good for exploring geometry and mathematics

• Good for students:

– to explore and understand the underlying principles of Eu-

clidean constructions and transformations

– to create and explore mathematical animations
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What Good is Dynamic Geometry Software? (2)

• Good for teachers:

– to demonstrate and illustrate concepts

– to help students grasp the abstract concepts in mathe-

matics

• Good for publishing:

– easy producing complex mathematical figures
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Some Commercial Dynamic Geometry Tools

• Cabri Geometry — since 1988

• Geometer Sketchpad (GSP) — since 1991

• Cinderella (different geometries)
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Some Free Dynamic Geometry Tools

• KSEG

• Eukleides

• DrGeo

• http://en.wikipedia.org/wiki/Dynamic_geometry_software
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Some of 3D Dynamic Geometry Tools

• Cabri 3D

• Archimedes Geo3D

• JavaView
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Different Tools, Different Skills

• Animations, loci, ...

• Symbolic expressions, calculations, ...

• Saving constructions, saving figures, ...

• Multilingual

• Automated theorem proving, probabilistic proofs, ...
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GCLC/WinGCLC

• First version released in 1996, originally, as a tool for pro-

ducing geometrical illustrations for LATEX, hence the name

GCLC:

”Geometry Constructions → LATEX Converter”.

• Command-line versions for Windows and Linux and a version

with graphical interface for Windows (WinGCLC)

• Freely available from http://www.matf.bg.ac.yu/~janicic/gclc

and from EMIS (The European Mathematical Information

Service) servers http://www.emis.de/misc/index.html
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The Main Purposes of GCLC/WinGCLC

• Visualizing geometry but also other fields of mathematics

• Use in mathematical education, in studying geometry and as

a research tool

• Producing digital mathematical illustrations of high quality
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GCLC Users

• Used in high-schools and university courses, and for publish-
ing worldwide

• >18000 visitors since 2003, last 350 visitors (last three weeks):
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GCLC: Basic Principles

• A construction is a formal procedure, not an image

• Producing mathematical illustrations should be based on ”de-
scribing figures”, not on ”drawing figures” (similarly as TEX)

• Images can be produced from descriptions, but not vice-
versa!

• All instructions are given explicitly, in GCLC language

• GCLC language is like a simple programming language, easily
understandable to mathematicians
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Features (part I)

• Support for geometrical constructions: sequences of primi-

tive construction steps performed by ruler and compass

• Support for compound constructions and transformations

• Symbolic expressions, while-loops, user-defined procedures

• Conics, 2D and 3D curves, 3D surfaces

• Built-in theorem provers
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Features (part II)

• User-friendly interface, interactive work, animations, traces

• Import from JavaView

• Export to different formats (LATEX— several versions, EPS,

BMP, SVG)

• Full XML support

• Free, small in size (750Kb–1100Kb), easy to use
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GCLC Language

• Instructions for describing content

• Instructions for describing presentation

• All of them are explicit, given within GCLC documents
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Simple Example (part I)

% fixed points | % labelling points
point A 15 20 | cmark_lb A
point B 80 10 | cmark_rb B
point C 70 90 | cmark_rt C

| cmark_lt O_1
% side bisectors | cmark_rt O_2
med a B C |
med b A C | % drawing the sides of the triangle ABC
med c B A | drawsegment A B

| drawsegment A C
% intersections of bisectors | drawsegment B C
intersection O_1 a b |
intersection O_2 a c | % drawing the circumcircle of the triangle

| drawcircle O_1 A
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Simple Example (part II)

A

B

C

O1 O2
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GCLC: A Brief Tutorial

• Basic definitions, constructions, transformations

• Drawing, labelling, and printing commands

• 2D and 3D Cartesian commands

• Symbolic expressions, loops, user-defined procedures

• Commands for describing animations
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Second Lecture:
Automated Theorem Proving
in Geometry
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Early History of Automated Theorem Proving in Geometry

• Euclid’s Elements

• Hilber’s Foundations of Geometry

• Tarski’s elementary geometry
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Geometrical Theorems of Constructive Type

• Conjectures that corresponds to properties of constructions

• Usually, only Euclidean plane geometry

• Non-degenerate conditions are very important
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Coordinate-free methods

• Give traditional (human readable) proofs:

– Gelertner’s theorem prover (Gelertner 1950’s)

– Area method (Chou et.al.1992)

– Angle method (Chou et.al.1990’s)

– ...
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Coordinate-based methods

• Algebraic methods (no geometrical proofs, just algebraic ar-

guments):

– Gröbner basis method (Buchberger 1965)

– Wu’s method (Wu 1977)

– ...
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Area method

The method deals with the following geometry quantities:

ratio of directed segments: for four collinear points P , Q, A,

and B such that A 6= B, it is the ratio
−−→
PQ−→
AB

;

signed area: it is the signed area SABC of a triangle ABC or the

signed area SABCD of a quadrilateral ABCD;
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Area method (2)

Pythagoras difference: for three points, PABC is defined as fol-

lows:

PABC = AB2 + CB2 −AC2 .

Pythagoras difference for four points, PABCD is defined as

follows:

PABCD = PABD − PCBD .

real number: it is a real number, constant.
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Area method (3)

• All construction steps are reduced to a limited number of

specific constructions

• The conjecture is also expressed as an equality over geometry

quantities (over points already introduced)

• The goal is to prove the conjecture by reducing it to a trivial

equality (0=0)
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Area method (4)

• For reducing the goal, different simplifications are used:

x · 1 → x

x · 0 → 0

SAAB → 0

SABC → SBCA

• Crucially, for each pair quantity-construction step there is one
elimination lemma that enable eliminating a relevant point

• Thank to these lemmas, the point are eliminated from the
conjecture in opposite direction that they were introduced
one by one
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Area Method — Elimination lemmas

For instance, if a point Y is introduced as the intersection of

lines UV and PQ, then Y can be eliminated from expression of

the form
−→
AY−−→
CD

using the following equality:

−→
AY
−−→
CD

=


SAPQ

SCPDQ
, if A ∈ UV

SAUV
SCUDV

, if A 6∈ UV
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Example: Menelaus’s Theorem

A

B

C

D

E

F

• Conjecture:
−→
AF
−−→
FB

·
−−→
BD
−−→
DC

·
−−→
CE
−→
EA

= −1
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Example: Menelaus’s Theorem (2)

• Fragment of the proof:(−→
AF−−→
BF

·
(−−→

BD−−→
DC

·
−−→
CE−→
EA

))
= 1, by algebraic simplifications

(
SADE
SBDE

·
(−−→

BD−−→
DC

·
−−→
CE−→
EA

))
= 1, by Lemma 8 (point F eliminated)

...

0 = 0, by algebraic simplifications
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Algebraic methods

• Geometry statements are of the equality form

• Construction steps are converted into a polynomial system

h1(u1, u2, . . . , ud, x1, . . . , xn) = 0
h2(u1, u2, . . . , ud, x1, . . . , xn) = 0

. . .
ht(u1, u2, . . . , ud, x1, . . . , xn) = 0

• The goal is to check whether for the conjecture it holds that

g(u1, u2, . . . , ud, x1, . . . , xn) = 0
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Example: Menelaus Theorem

A

B

C

D

E

F

• Coordinates assigned to the points:

A(0,0), B(u1,0), C(u2, u3), D(x1, u4), E(x2, u5), F (x4,0)
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Example: Menelaus Theorem (2)

• Conditions:

D on BC: p1 = −u3x1 + (u4u2 − u4u1 + u3u1)

E on AC: p2 = −u3x2 + u5u2

F on DE: p3 = (−u5 + u4)x4 − u4x2 + u5x1

• Conjecture:

p4 = (−u5u3 + u4u3)x4 + (−u5u4u1 + u5u3u1)
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Example: Menelaus Theorem (3)

• After triangulation:

p1 = −u3x1 + (u4u2 − u4u1 + u3u1)
p2 = −u3x2 + u5u2
p3 = (−u5 + u4)x4 − u4x2 + u5x1

• Wu’s elimination procedure in several steps gives p4 = 0,

which was required to prove
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Buchberger Method

• It builds a Gröbner bases (GB) for the set of polynomials

corresponding to the construction

• Then it checks the conjecture, by efficiently testing whether

its remainder with respect to GB is 0

38



Theorem Provers Built-into GCLC

• There are three theorem provers built-into GCLC:

– a theorem prover based on the area method

– a theorem prover based on the Wu’s method

– a theorem prover based on the Buchberger’s method

• All of them are very efficient and can prove many non-trivial

theorems in only seconds.
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Using Theorem Provers Built-into GCLC

• The theorem provers are tightly built-in: the user has just to

state the conjecture about the construction described.

• For example, in one of the above examples, points O_1 and

O_2 are identical and this can be stated as follows

prove { identical O_1 O_2 }

40



Processing Descriptions of Constructions

• Syntactical check

• Semantical check (e.g., whether two concrete points deter-

mine a line)

• Deductive check — verifies if a construction is regular (e.g., whether

two constructed points never determine a line)
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Further Work

• Aiming at more intelligence in GCLC: e.g., solving construc-

tive problems automatically
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Conclusions

• Dynamic geometry tools are around for twenty years but just

recently they started to be very intelligent

• Automated geometrical theorem provers are around for forty

years but just recently they started to work in harmony with

dynamic geometry tools

• GCLC aims to be a compact mathematical tool that com-

bines ease of use and deep mathematical reasoning modules
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