Intelligent Geometrical Software

Predrag Janičić, Vesna Pavlović, Sana Stojanović Faculty of Mathematics, University of Belgrade, Serbia and

Pedro Quaresma

Department of Mathematics, University of Coimbra, Portugal

Spring School Geometry and Visualization Belgrade, Serbia, April 19–25, 2008.

Today's Agenda

- Predrag: Dynamic Geometrical Software and GCLC
- Predrag: Automated Theorem Proving in Geometry
- Pedro: GeoThms A Repository of Geometrical Constructions
- Vesna & Sana: Formalization and Automation of Euclidean Geometry
- Predrag & Vesna & Sana: GCLC Lab Session

A Few Words about the ARGO Group

- The name and the game: Automated Reasoning GrOup
- Research interests: automated theorem proving and formal theorem proving, with emphasis on SAT and SMT solving, geometrical reasoning and their applications.
- URL: http://argo.matf.bg.ac.yu/
- Come to our seminar!

First Lecture: Dynamic Geometrical Software and GCLC

Agenda

- What is dynamic geometry software?
- What are the DG tools?
- What is GCLC?
- Brief tutorial on GCLC

What is Dynamic Geometry Software?

- Interactive geometry software or Dynamic geometry software or Dynamic geometry environments or Dynamic geometry tools
- DG tools allow the user "to create and then manipulate geometric constructions, primarily in plane geometry".
- The user typically starts a construction with a few points, construct new objects, and then can move the points to see how the construction changes.

What Good is Dynamic Geometry Software?

- Fun and good for exploring geometry and mathematics
- Good for students:
 - to explore and understand the underlying principles of Euclidean constructions and transformations
 - to create and explore mathematical animations

What Good is Dynamic Geometry Software? (2)

- Good for teachers:
 - to demonstrate and illustrate concepts
 - to help students grasp the abstract concepts in mathematics
- Good for publishing:
 - easy producing complex mathematical figures

Some Commercial Dynamic Geometry Tools

- Cabri Geometry since 1988
- Geometer Sketchpad (GSP) since 1991
- Cinderella (different geometries)

Some Free Dynamic Geometry Tools

- KSEG
- Eukleides
- DrGeo
- http://en.wikipedia.org/wiki/Dynamic_geometry_software

Some of 3D Dynamic Geometry Tools

- Cabri 3D
- Archimedes Geo3D
- JavaView

Different Tools, Different Skills

- Animations, loci, ...
- Symbolic expressions, calculations, ...
- Saving constructions, saving figures, ...
- Multilingual
- Automated theorem proving, probabilistic proofs, ...

GCLC/WinGCLC

• First version released in 1996, originally, as a tool for producing geometrical illustrations for LAT_EX, hence the name GCLC:

"Geometry Constructions \rightarrow LAT_EX Converter".

- Command-line versions for Windows and Linux and a version with graphical interface for Windows (WinGCLC)
- Freely available from http://www.matf.bg.ac.yu/~janicic/gclc and from EMIS (The European Mathematical Information Service) servers http://www.matf.bg.ac.yu/~janicic/gclc and from EMIS (The European Mathematical Information Service) servers http://www.matf.bg.ac.yu/~janicic/gclc

The Main Purposes of GCLC/WinGCLC

- Visualizing geometry but also other fields of mathematics
- Use in mathematical education, in studying geometry and as a research tool
- Producing digital mathematical illustrations of high quality

GCLC Users

- Used in high-schools and university courses, and for publishing worldwide
- >18000 visitors since 2003, last 350 visitors (last three weeks):

GCLC: Basic Principles

- A construction is a formal procedure, not an image
- Producing mathematical illustrations should be based on "describing figures", not on "drawing figures" (similarly as T_EX)
- Images can be produced from descriptions, but not viceversa!
- All instructions are given explicitly, in GCLC language
- GCLC language is like a simple programming language, easily understandable to mathematicians

Features (part I)

- Support for geometrical constructions: sequences of primitive construction steps performed by ruler and compass
- Support for compound constructions and transformations
- Symbolic expressions, while-loops, user-defined procedures
- Conics, 2D and 3D curves, 3D surfaces
- Built-in theorem provers

Features (part II)

- User-friendly interface, interactive work, animations, traces
- Import from JavaView
- Export to different formats (LAT_EX— several versions, EPS, BMP, SVG)
- Full XML support
- Free, small in size (750Kb-1100Kb), easy to use

GCLC Language

- Instructions for describing content
- Instructions for describing **presentation**
- All of them are explicit, given within GCLC documents

Simple Example (part I)

% fixed points point A 15 20 point B 80 10 point C 70 90

```
% side bisectors
med a B C
med b A C
med c B A
```

% intersections of bisectors intersection O_1 a b intersection O_2 a c

```
% labelling points
cmark_lb A
cmark_rb B
cmark_rt C
cmark_lt O_1
cmark_rt O_2
% drawing the sides of the triangle ABC
drawsegment A B
drawsegment A C
drawsegment B C
% drawing the circumcircle of the triangle
drawcircle O_1 A
```

Simple Example (part II)

GCLC: A Brief Tutorial

- Basic definitions, constructions, transformations
- Drawing, labelling, and printing commands
- 2D and 3D Cartesian commands
- Symbolic expressions, loops, user-defined procedures
- Commands for describing animations

Second Lecture: Automated Theorem Proving in Geometry Early History of Automated Theorem Proving in Geometry

- Euclid's *Elements*
- Hilber's Foundations of Geometry
- Tarski's elementary geometry

Geometrical Theorems of Constructive Type

- Conjectures that corresponds to properties of constructions
- Usually, only Euclidean plane geometry
- Non-degenerate conditions are very important

Coordinate-free methods

- Give traditional (human readable) proofs:
 - Gelertner's theorem prover (Gelertner 1950's)
 - Area method (Chou et.al.1992)
 - Angle method (Chou et.al.1990's)

— ...

Coordinate-based methods

- Algebraic methods (no geometrical proofs, just algebraic arguments):
 - Gröbner basis method (Buchberger 1965)
 - Wu's method (Wu 1977)

. . .

Area method

The method deals with the following geometry quantities:

ratio of directed segments: for four collinear points P, Q, A, and B such that $A \neq B$, it is the ratio $\frac{\overrightarrow{PQ}}{\overrightarrow{AB}}$;

signed area: it is the signed area S_{ABC} of a triangle ABC or the signed area S_{ABCD} of a quadrilateral ABCD;

Area method (2)

Pythagoras difference: for three points, P_{ABC} is defined as follows:

$$P_{ABC} = AB^2 + CB^2 - AC^2 \; .$$

Pythagoras difference for four points, P_{ABCD} is defined as follows:

$$P_{ABCD} = P_{ABD} - P_{CBD} \; .$$

real number: it is a real number, constant.

Area method (3)

- All construction steps are reduced to a limited number of specific constructions
- The conjecture is also expressed as an equality over geometry quantities (over points already introduced)
- The goal is to prove the conjecture by reducing it to a trivial equality (0=0)

Area method (4)

• For reducing the goal, different simplifications are used:

 $\begin{array}{rrrrr} x \cdot \mathbf{1} & \to & x \\ x \cdot \mathbf{0} & \to & \mathbf{0} \\ S_{AAB} & \to & \mathbf{0} \\ S_{ABC} & \to & S_{BCA} \end{array}$

- Crucially, for each pair quantity-construction step there is one *elimination lemma* that enable eliminating a relevant point
- Thank to these lemmas, the point are eliminated from the conjecture in opposite direction that they were introduced one by one

Area Method — Elimination lemmas

For instance, if a point Y is introduced as the intersection of lines UV and PQ, then Y can be eliminated from expression of the form $\frac{\overrightarrow{AY}}{\overrightarrow{CD}}$ using the following equality:

$$\frac{\overrightarrow{AY}}{\overrightarrow{CD}} = \begin{cases} \frac{S_{APQ}}{S_{CPDQ}}, & \text{if } A \in UV \\ \frac{S_{AUV}}{S_{CUDV}}, & \text{if } A \notin UV \end{cases}$$

Example: Menelaus's Theorem

• Conjecture:

$$\frac{\overrightarrow{AF}}{\overrightarrow{FB}} \cdot \frac{\overrightarrow{BD}}{\overrightarrow{DC}} \cdot \frac{\overrightarrow{CE}}{\overrightarrow{EA}} = -1$$

Example: Menelaus's Theorem (2)

• Fragment of the proof:

$$\left(\frac{\overrightarrow{AF}}{\overrightarrow{BF}} \cdot \left(\frac{\overrightarrow{BD}}{\overrightarrow{DC}} \cdot \frac{\overrightarrow{CE}}{\overrightarrow{EA}} \right) \right) = 1, \text{ by algebraic simplifications}$$
$$\left(\frac{S_{ADE}}{S_{BDE}} \cdot \left(\frac{\overrightarrow{BD}}{\overrightarrow{DC}} \cdot \frac{\overrightarrow{CE}}{\overrightarrow{EA}} \right) \right) = 1, \text{ by Lemma 8 (point } F \text{ eliminated)}$$
...

0 = 0, by algebraic simplifications

Algebraic methods

- Geometry statements are of the equality form
- Construction steps are converted into a polynomial system

$$h_1(u_1, u_2, \dots, u_d, x_1, \dots, x_n) = 0$$

$$h_2(u_1, u_2, \dots, u_d, x_1, \dots, x_n) = 0$$

$$\dots$$

$$h_t(u_1, u_2, \dots, u_d, x_1, \dots, x_n) = 0$$

• The goal is to check whether for the conjecture it holds that

$$g(u_1, u_2, \ldots, u_d, x_1, \ldots, x_n) = 0$$

Example: Menelaus Theorem

• Coordinates assigned to the points:

 $A(0,0), B(u_1,0), C(u_2,u_3), D(x_1,u_4), E(x_2,u_5), F(x_4,0)$

Example: Menelaus Theorem (2)

• Conditions:

D on BC:
$$p_1 = -u_3x_1 + (u_4u_2 - u_4u_1 + u_3u_1)$$

E on AC: $p_2 = -u_3x_2 + u_5u_2$
F on DE: $p_3 = (-u_5 + u_4)x_4 - u_4x_2 + u_5x_1$

• Conjecture:

$$p_4 = (-u_5u_3 + u_4u_3)x_4 + (-u_5u_4u_1 + u_5u_3u_1)$$

Example: Menelaus Theorem (3)

• After triangulation:

$$p_1 = -u_3x_1 + (u_4u_2 - u_4u_1 + u_3u_1)$$

$$p_2 = -u_3x_2 + u_5u_2$$

$$p_3 = (-u_5 + u_4)x_4 - u_4x_2 + u_5x_1$$

• Wu's elimination procedure in several steps gives $p_4 = 0$, which was required to prove

Buchberger Method

- It builds a Gröbner bases (GB) for the set of polynomials corresponding to the construction
- Then it checks the conjecture, by efficiently testing whether its remainder with respect to GB is 0

Theorem Provers Built-into GCLC

- There are three theorem provers built-into GCLC:
 - a theorem prover based on the area method
 - a theorem prover based on the Wu's method
 - a theorem prover based on the Buchberger's method
- All of them are very efficient and can prove many non-trivial theorems in only seconds.

Using Theorem Provers Built-into GCLC

- The theorem provers are tightly built-in: the user has just to state the conjecture about the construction described.
- For example, in one of the above examples, points 0_1 and 0_2 are identical and this can be stated as follows

```
prove { identical 0_1 0_2 }
```

Processing Descriptions of Constructions

- Syntactical check
- Semantical check (e.g., whether two concrete points determine a line)
- Deductive check verifies if a construction is regular (e.g., whether two constructed points never determine a line)

Further Work

• Aiming at more intelligence in GCLC: e.g., solving constructive problems automatically

Conclusions

- Dynamic geometry tools are around for twenty years but just recently they started to be very intelligent
- Automated geometrical theorem provers are around for forty years but just recently they started to work in harmony with dynamic geometry tools
- GCLC aims to be a compact mathematical tool that combines ease of use and deep mathematical reasoning modules