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Agenda

• Early history of automated theorem proving in geometry

• Coordinate-free and coordinate-based methods:

– The area method

– Wu’s and Gröbner bases methods

• Theorem provers built-into GCLC

• Intelligent mathematical software
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Early History of Automated Theorem Proving in Geometry

Axiomatizations:

• Euclid’s Elements

• Hilber’s Foundations of Geometry

• Tarski’s elementary geometry

• Avigad’s Euclid-style geometry
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Geometrical Theorems of Constructive Type

• Conjectures that corresponds to properties of constructions

• Usually, only Euclidean plane geometry

• Non-degenerate conditions are very important
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Coordinate-free methods

Give traditional (human readable) proofs:

• Gelertner’s theorem prover (Gelertner 1950’s)

• Area method (Chou et.al.1992)

• Angle method (Chou et.al.1990’s)

• ...
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Coordinate-based methods

• Algebraic methods (no synthetic geometry proofs, just alge-

braic arguments):

– Gröbner basis method (Buchberger 1965)

– Wu’s method (Wu 1977)

– ...
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Area method

The method deals with the following geometry quantities:

ratio of directed segments: for four collinear points P , Q, A,

and B such that A 6= B, it is the ratio
−−→
PQ−→
AB

;

signed area: it is the signed area SABC of a triangle ABC or the

signed area SABCD of a quadrilateral ABCD;
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Area method (2)

Pythagoras difference: for three points, PABC is defined as fol-

lows:

PABC = AB2 + CB2 −AC2 .

Pythagoras difference for four points, PABCD is defined as

follows:

PABCD = PABD − PCBD .

real number: it is a real number, constant.
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Area method (3)

• All construction steps are reduced to a limited number of

specific constructions

• The conjecture is also expressed as an equality over geometry

quantities (over points already introduced)

• The goal is to prove the conjecture by reducing it to a trivial

equality (0=0)
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Area method (4)

points A and B are identical PABA = 0
points A, B, C are collinear SABC = 0
AB is perpendicular to CD PACD = PBCD
AB is parallel to CD SACD = SBCD

O is the midpoint of AB
−→
AO−−→
OB

= 1

AB has the same length as CD PABA = PCDC

points A, B, C, D are harmonic
−→
AC−−→
CB

=
−−→
DA−−→
DB
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Area method (5)

• For reducing the goal, different simplifications are used:

x · 1 → x

x · 0 → 0

SAAB → 0

SABC → SBCA

• Crucially, for each pair quantity-construction step there is one
elimination lemma that enable eliminating a relevant point

• Thank to these lemmas, the point are eliminated from the
conjecture in opposite direction that they were introduced
one by one
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Area Method — Elimination lemmas

For instance, if a point Y was introduced as the intersection of

lines UV and PQ, then Y can be eliminated from expression of

the form
−→
AY−−→
CD

using the following equality:

−→
AY
−−→
CD

=


SAPQ

SCPDQ
, if A ∈ UV

SAUV
SCUDV

, if A 6∈ UV
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Example: Menelaus’s Theorem

A B

C

D

E

F

• Conjecture:
−→
AF
−−→
FB

·
−−→
BD
−−→
DC

·
−−→
CE
−→
EA

= −1
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Example: Menelaus’s Theorem (2)

• Fragment of the proof:(−→
AF−−→
BF

·
(−−→

BD−−→
DC

·
−−→
CE−→
EA

))
= 1, by algebraic simplifications

(
SADE
SBDE

·
(−−→

BD−−→
DC

·
−−→
CE−→
EA

))
= 1, by Lemma 8 (point F eliminated)

...

0 = 0, by algebraic simplifications
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Coordinate-based (Algebraic) methods

• Geometry statements have the form of equalities

• Construction steps are converted into a polynomial system

h1(u1, u2, . . . , ud, x1, . . . , xn) = 0
h2(u1, u2, . . . , ud, x1, . . . , xn) = 0

. . .
ht(u1, u2, . . . , ud, x1, . . . , xn) = 0

• The goal is to check whether for the conjecture it holds that

g(u1, u2, . . . , ud, x1, . . . , xn) = 0
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Example: Menelaus Theorem

A B

C

D

E

F

• Coordinates assigned to the points:

A(0,0), B(u1,0), C(u2, u3), D(x1, u4), E(x2, u5), F (x4,0)
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Example: Menelaus Theorem (2)

• Conditions:

D on BC: p1 = −u3x1 + (u4u2 − u4u1 + u3u1)

E on AC: p2 = −u3x2 + u5u2

F on DE: p3 = (−u5 + u4)x4 − u4x2 + u5x1

• Conjecture:

p4 = (−u5u3 + u4u3)x4 + (−u5u4u1 + u5u3u1)
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Wu’s Method

• Invented by Wu in 1977

• Considered to be the most efficient method for automated

theorem proving in all fields (not only geometry)

• Considered to be one of the four modern great Chinese in-

ventions

• Similar to Gauss’ elimination procedure
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Wu’s Method on Menelaus Theorem

• For the above example, triangulation gives:

p1 = −u3x1 + (u4u2 − u4u1 + u3u1)
p2 = −u3x2 + u5u2
p3 = (−u5 + u4)x4 − u4x2 + u5x1

• Wu’s elimination procedure in several steps gives p4 = 0,

which was required to prove
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Gröbner-bases Method

• Invented by Buchberger in 1965, widely used CAS algorithm
with many applications

• Gröbner basis (GB) is a particular kind of generating subset
of an ideal of a polynomial ring R.

• Buchberger’s algorithm builds GB for the set of polynomials
corresponding to the construction and then it checks the
conjecture, by efficiently testing whether its remainder with
respect to GB is 0

• For reducing w.r.t. the Gröbner base, the ordering of reduc-
ing is irrelevant
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Theorem Provers Built-into GCLC

• There are three theorem provers built-into GCLC:

– a theorem prover based on the area method

– a theorem prover based on the Wu’s method

– a theorem prover based on the Buchberger’s method

• All of them are very efficient and can prove many non-trivial

theorems in only milliseconds.

20



Using Theorem Provers Built-into GCLC

• The theorem provers are tightly built-in: the user has just to

state the conjecture about the construction described.

• For example:

prove { identical O_1 O_2 }
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Demo: Several Examples

• The repository GeoThms http://hilbert.mat.uc.pt/~geothms

(developed by Pedro Quaresma (Portugal) and Predrag Janičić)

contains >100 theorems automatically proved

• Most of these theorems are included in the GCLC distribution

available from the Internet
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Processing Descriptions of Constructions

• Syntactical check

• Semantical check (e.g., whether two concrete points deter-

mine a line)

• Deductive check — verifies if a construction is regular (e.g., whether

two constructed points never determine a line)
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Intelligent Geometrical Software

ATP
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Search
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Conclusions

• Dynamic geometry tools are around for twenty years but just

recently they started to be very intelligent

• Automated geometrical theorem provers are around for forty

years but just recently they started to work in harmony with

dynamic geometry tools

• GCLC aims to be a powerful geometrical assistant
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