
Ensuring Safe Usage of Buffers in

Programming Language C

Milena Vujošević–Janičić

Faculty of Mathematics, University of Belgrade

Studentski trg 16, Belgrade, Serbia

www.matf.bg.ac.yu/~milena

ICSOFT 2008

Porto, Portugal, July 5-8, 2008.



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

1



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

2



Buffer Overflows

• A buffer overflow (or buffer overrun) is a programming flaw
which enables storing more data in a data storage area (i.e. buf-
fer) than it was intended to hold.

• Buffer overflows are the most frequent and the most critical
flaws in programs written in C.

• Buffer overflows are suitable targets for security attacks and
source of serious programs’ misbehavior. Buffer overflows
account for around 50% of all software vulnerabilities.

• In handling and avoiding possible buffer overflows, standard
testing of software is not sufficient.

3



Buffer Overflows — Static and Dynamic Analysis

• The problem of automated detection of buffer overflows has

attracted a lot of attention over the last ten years.

• There are two approaches for detecting buffer overflows:

– Tools based on dynamic analysis examine the program

while it is being executed (dynamic testing, specialized

compilers, library of functions, operating systems).

– Tools based on static analysis examine the source code of

the program and aim at detecting buffer overflows before

the execution.

4



Buffer Overflows — Static Analysis Tools

• Lexical analysis (ITS4 (2000), RATS (2001), Flawfinder (2001))

• Semantical analysis

– BOON (Univ. of California, Berkeley, USA, 2000)

– Splint (Univ. of Virginia, USA, 2001)

– CSSV (Univ. of Tel-Aviv, Israel, 2003)

– ARCHER (Stanford University, USA, 2003)

– UNO (Bell Laboratories, 2001)

– Caduceus (Univ. Paris-Sud, Orsay, France, 2007)

– Polyspace C Verifier, AsTree, Parfait, Coverty, CodeSonar

5



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

6



Proposed Approach

• The proposed approach belongs to the group of static anal-

ysis methods based on semantical analysis of source code.

• The main motivation is to make a system with a flexible

architecture that enables easily changing of components of

the system and simple communication with different external

systems.

• Correctness conditions are expressed in terms of first order

logic, linear arithmetic and verified by a SMT theorem prover.

7



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

8



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

9



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

10



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

11



Proposed Approach — Database of Conditions

• The database of conditions is used for generating correctness
conditions for individual commands.

• The database stores triples (precondition, command, post-
condition). The semantics of a database entry (φ, E, ψ) is:

– in order E to be safe, the condition φ must hold;

– in order E to be flawed, the condition ¬φ must hold;

– after E, the condition ψ holds.

• The database is external and open. Initially, it stores reason-
ing rules about operators and functions from the standard C
library. Also, the user can add or remove entries.

12



Proposed Approach — Modelling Semantics of Programs

• For defining correctness conditions we use meta-level func-
tions:

– value, returns a value of a given variable;

– size, returns a number of elements allocated for a buffer;

– used, relevant only for string buffers, returns a number of
elements used by the given buffer (including ’\0’).

• These functions have an additional argument called state or
timestamp, which provides basis for flow-sensitive analysis
and a form of pointer analysis (similar to SSA).

13



Proposed Approach — Generating Correctness Conditions

• Examples of database entries:

precondition command postcondition
– char x[N] size(x,1) = value(N,0)
– x = y value(x,1) = value(y,0)

• For an individual command C, if there is a database entry
(φ, E, ψ) such that there is a substitution σ such that C = Eσ,
then precond(C) = φσ and postcond(C) = ψσ.

• States are updated in order to take into account the wider
context of the command. For example:

code postcondition
int a,b; —
a = 1; value(a,1) = value(1,0)
b = 2; value(b,1) = value(2,0)
a = b; value(a,2) = value(b,1)

14



Proposed Approach — Generating Correctness Conditions

• Postcondition for an if command are constructed as follows:

precondition command postcondition
– if(p)
– { p
precond(C1) C1; postcond(C1)
precond(C2) C2; postcond(C2)

...; ...
– } (p ∧ postcond(C1) ∧ postcond(C2)...)

∨(¬p ∧ update states)

• Currently, loops are processed in a limited manner — only

the first iteration is considered (which is often sufficient).

15



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

16



Proposed Approach — Correctness Conjectures

• For a command C, let Φ be conjunction of postconditions
for all commands that precede C. The command C is:

– safe, if (∀∗)(Φ ⇒ precond(C)) is valid;

– flawed, if (∀∗)(Φ ⇒ ¬precond(C)) is valid;

– unsafe, if neither of above;

– unreachable, if it is both safe and flawed.

• Before sending conjectures to the prover, evaluation, elimi-
nation of irrelevant conjuncts and abstraction are applied.

17



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

18



C source code
Parser and intermediate code generator ↓
– parsing
– intermediate code generating

Intermediate code
Code transformer ↓
– eliminating multiple declarations
– reducing all loops to do-while loops
– eliminating all compound conditions
– etc.

Transformed code
Database and conditions generator ↓
– unifying with a matching record in the database
– generating conditions for individual commands
– updating states for sequences of commands

Hoare triples
Generator and optimizer for correctness ↓
and incorrectness conjectures
– resolving preconditions and postconditions of functions
– eliminating redundant conjuncts
– evaluation
– abstraction

Conjectures
Automated theorem prover for LA ↓
– processing input formulae in smt-lib format
– returning results

Status of commands
Results ↓
– providing explanations for status of the commands

19



Proposed Approach — Example

For the following fragment of code:
char src[200];
fgets(src,200,stdin);
if the database of conditions contains the following entries:

precondition command postcondition
– char x[N] size(x,1) = value(N,0)

∧used(x,1) > 0
size(x,0) ≥ value(y,0) fgets(x,y,z) used(x,1) ≤ value(y,0)

∧used(x,1) > 0

then the following conditions are generated:

precondition command postcondition
– char src[200] size(src,1) = value(200,0)

∧used(src,1) > 0
size(src,0) ≥ value(200,0) fgets(src,200,stdin) used(src,1) ≤ value(200,0)

∧used(src,1) > 0

20



Proposed Approach — Example

Using the generated conditions, the correctness conjecture for
the command fgets(src,200,stdin) is

(0 < used(src,1))∧(size(src,1) = value(200,0)) ⇒ (size(src,1) ≥ value(200,0))

After evaluation, the conjecture becomes:

(0 < used(src,1)) ∧ (size(src,1) = 200) ⇒ (size(src,1) ≥ 200)

After abstraction, the conjecture becomes:

(0 < used src 1) ∧ (size src 1 = 200) ⇒ (size src 1 ≥ 200)

This formula is transformed to SMT-lib format and sent to an

automated theorem prover which can confirm its validity. There-

fore, the usage of the command fgets(src,200,stdin) is safe.

21



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

22



The FADO Tool

• FADO — Flexible Automated Detection of Buffer Overflows

• The tool is implemented in programming language C++, it
consists of ≈ 13000 lines of code organized in 35 classes.

• The architecture of the tool follows the described phases.

• It uses two external systems: JSCPP parser and ArgoLib
theorem prover.

• Modularity makes the tool very flexible: different components
can be easily updated or replaced by alternatives.

23



The FADO Tool — Experimental Results

• Evaluation results are obtained on the set of benchmarks
(291 programs in four versions) that is freely available at
http://www.ll.mit.edu/IST/corpora.html.

• On these benchmarks, FADO detected 57% of buffer over-
flows, with 6.5% false alarm rate. With additional, specific
database entries, the false alarm rate was 3%.

• From the remaining flaws:

– 35% are due to the loops that cannot currently be pro-
cessed;

– 3% cannot be detected because the current implementa-
tion still does not cover some programming constructs.

– 5% are substantially beyond the reach of our system.

24



The FADO Tool — Experimental Results

• For processing these 291 test programs, FADO spends 46.8s
on a PC computer with 2.4GHz and 768MB RAM memory.
Average time for a single test program is 0.16s.

• The times spent by different phases were:

Phase Percent
of time

Parsing 1.2%
Transforming 0.5%
Generating conditions 51.8%
Exporting and testing conjectures 46.4%
Processing and formatting results 0.1%

25



FADO Tool — Experimental results

The results of experimental comparison based on the mentioned

corpus:

Tool Detection False Confusion Average CPU
rate alarm rate time

rate spent

PolySpace 99.7 0.0 2.4 172.53s
ARCHER 90.7 0.0 0.0 0.25s
FADO 57.0 6.5 12.5 0.16s
Splint 56.4 12 21.3 0.02s
UNO 51.9 0.0 0.0 0.02s
BOON 0.7 0.0 0.0 0.06s

26



Roadmap

• Buffer Overflows

• Proposed Approach

• The FADO Tool

• Conclusions and Future Work

27



Conclusions and Future Work

• A new, static, modular system for automated detection of

buffer overflows in programs written in C is presented.

• The system analyzes the code, generates correctness and in-

correctness conjectures for individual commands, and invokes

an external automated theorem prover for linear arithmetic

to test the generated conjectures.

• The FADO tool is a prototype implementation of the pre-

sented system, and it gives promising results.

28



Conclusions and Future Work

• Some of the novelties that our system introduce are:

– its modular and flexible architecture (so its building blocks

can be easily changed and updated),

– an external and open database of conditions (so the under-

lying reasoning rules are not hard-coded into the system),

– buffer overflow correctness conjectures given explicitly in

logical terms,

– usage of external theorem provers and related standards.

29



Conclusions and Future Work

• Future work:

– Extend the system to preform a deeper analysis of loops

and of user defined functions, so the system will be sound

and its inter-procedural analysis will be fully automatic.

– Use theorem provers with more expressive background

theories.

– Extend the system for other sorts of program analysis

(e.g., detecting memory leaks).

30



Thank You for Your Attention

31


