Introduction	Statistical hypothesis testing	Methodology	Example evaluation	Related work	Conclusions
000000					

Statistical Methodology for Comparison of SAT Solvers

Mladen Nikolić Automated Reasoning GrOup University of Belgrade

SAT 2010, UK

July 13, 2010.

Mladen NikolićAutomated Reasoning GrOupUniversity of Belgr Statistical Methodology for Comparison of SAT Solvers

Introduction	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Overvie	W				

2 Statistical hypothesis testing

3 Methodology

4 Example evaluation

5 Related work

6 Conclusions

Introduction	Statistical hypothesis testing O	Methodology 0000	Example evaluation	Related work ○	Conclusions
Overvie	w				

2 Statistical hypothesis testing

3 Methodology

- 4 Example evaluation
- 5 Related work

6 Conclusions

白 ト イヨト イヨト

Introduction ●○○○○○	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions					
Compa	Comparison of SAT solvers									

comparison of SAT solvers

- Importance of SAT solver comparison
 - Significant number of proposed modifications each year
 - Their usefulness is not always self-evident
 - Need to discriminate better between good and bad ideas
- The approach most often used
 - Can be unreliable
 - Can't decide if the observed difference could arise by chance
 - Doesn't use solving times to the full extent

Introduction 00000	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Solver r	runtime variatior	า			

- Solving time of a solver on a formula can vary
- Each formula should be solved several times in order to sample from the runtime distribution
- What is a reasonable way of sampling?
 - Shuffling
 - Changing the random seed
 - Maybe even introducing very small changes to solver parameters?

高 とう モン・ く ヨ と

Introduction	Statistical hypothesis testing O	Methodology	Example evaluation	Related work	Conclusions
Number	r of solved form	ulae can	varv		

- Solvers from Minisat hack track 2009
- Industrial instances (2009), graph coloring instances (2002)
- Cutoff time of 1200s
- 50 runs per formula

	Industrial		Graph coloring		
Solver	Max	Min	Max	Min	
MiniSAT 09z	161	111	180	157	
minisat_cumr r	156	107	190	180	
minisat2	141	93	200	183	
MiniSat2hack	144	93	200	183	

• Variation of the number of solved formulae can be large

▲◎ → ▲ ● → ▲ ● → 二 ●

Introduction 000●00	Statistical hypothesis testing O	Methodology	Example evaluation	Related work	Conclusions			
Variatio	Variation in solver comparison							

- For each pair of solvers, 10000 simulated comparisons were made on each benchmark set with shuffled variants chosen on random
- MiniSAT 09z vs. minisat_cumr r on industrial 92%:8%
- minisat2 vs. MiniSat2Hack on industrial 6%:94%
- minisat2 vs. MiniSat2Hack on graph coloring 74%:26%
- The results of the comparison may vary due to solver runtime variation

Introduction 0000€0	Statistical hypothesis testing \circ	Methodology	Example evaluation	Related work ○	Conclusions
Main go	bal				

Make steps towards:

- Eliminating chance effects from the comparison
- Giving an information on statistical significance of the difference
- Making a better use of the solving data

• 3 >

Introduction 00000●	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Main di	fficulties				

- Censored observations (cutoff time is given)
- Comparison of runtime distributions for each instance is required
- Combining conclusions obtained on individual instances

Introduction	Statistical hypothesis testing O	Methodology 0000	Example evaluation	Related work ○	Conclusions
Overvie	2W				

2 Statistical hypothesis testing

3 Methodology

- 4 Example evaluation
- 5 Related work

6 Conclusions

白 ト イヨト イヨト

Introduction	Statistical hypothesis testing ●	Methodology	Example evaluation	Related work ○	Conclusions
Statistic	cal hypothesis te	esting			

- Null hypothesis H_0 (e.g. no difference in solver performance)
- Test statistic *T* (e.g. some measure of difference in solver performance)
- *p*-value the probability of obraining observed or more extreme value of *T* if *H*₀ were true
- If $p < \alpha$ then reject H_0
- Effect size (sometimes the value of T will do)

向下 イヨト イヨト

Introduction	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Overvie	w				

2 Statistical hypothesis testing

3 Methodology

4 Example evaluation

5 Related work

6 Conclusions

白 ト イヨト イヨト

Introduction	Statistical hypothesis testing \circ	Methodology ●○○○	Example evaluation	Related work O	Conclusions
Overvie	w of the method	lology			

Comparison of two solvers:

- Null hypothesis H_0 : no difference in solver performance
- For each formula F_i take samples of runtimes A_i and B_i for each solver
- Calculate difference $d(A_i, B_i)$ for all *i*
- Calculate the average \overline{d} of d values (it shouldn't deviate too much from its expectation under the null hypothesis $E_{H_0}\overline{d}$)
- Estimate the *p* value (by measuring the probability of the deviation)
- If $p < \alpha$ we judge which solver is better by the sign of $\overline{d} E_{H_0}\overline{d}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Statistical hypothesis testing \circ	Methodology ○●○○	Example evaluation	Related work	Conclusions
Choice of	of function <i>d</i>				

• What could be a good choice for the function d?

通 とう ほうとう ほうど

000000	o	0000	00		00
Dotorm	ining statistical	cignificar	aca and tha	affact di-	

Determining statistical significance and the effect size

- How is the average \overline{d} distributed?
- The distribution of \overline{d} is asymptotically normal with parameters that can be estimated from the data
- For effect size measure we take \overline{d} the expected (over the formulae of the corpus) probability of one solver being faster than the other

Introduction	Statistical hypothesis testing \circ	Methodology ○○○●	Example evaluation	Related work ○	Conclusions
Ranking	5				

- If there is more than 2 solvers, ranking can be produced from pairwise comparisons
- Kendall-Wei method

通 と く ヨ と く ヨ と

Introduction	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Overvie	w				

2 Statistical hypothesis testing

3 Methodology

4 Example evaluation

5 Related work

6 Conclusions

回 と く ヨ と く ヨ と

Mladen NikolićAutomated Reasoning GrOupUniversity of Belgr Statistical Methodology for Comparison of SAT Solvers

Introduct	tion	Statistical hypothesis	testing	Methodology	Example evaluation	Related work	Conclusions
					0•		
	1.	· ·		· · · ·	1		

Results of comparison on industrial instances

- α = 0.05
- *S*₁ MiniSAT 09z
- S₂ minisat_cumr r
- S₃ minisat2
- S₄ MiniSat2hack
- All the differences on industrial instances are statistically significant, on graph coloring, some are not ($\alpha = 0.05$)

P(X < Y) - 0.5	S_1	<i>S</i> ₂	S_3	<i>S</i> ₄
S_1	-	0.055	0.134	0.123
<i>S</i> ₂	-0.055	-	0.131	0.113
S_3	-0.134	-0.131	-	-0.040
S ₄	-0.123	-0.113	0.040	-

Mladen NikolićAutomated Reasoning GrOupUniversity of Belgr Statistical Methodology for Comparison of SAT Solvers

伺下 イヨト イヨト

Introduction	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Overvie	W				

2 Statistical hypothesis testing

3 Methodology

4 Example evaluation

5 Related work

6 Conclusions

回 と く ヨ と く ヨ と

Introduction	Statistical hypothesis testing \circ	Methodology	Example evaluation	Related work ●	Conclusions
Related	work				

- Le Berre, Simon (2003) shuffling might be important for SAT solver comparison
- Audemard, Simon (2008) shuffling can cause a large variation of the number of solved formulae
- Franc Brglez, et al. (2005, 2007) use of standard statistical tests to compare two solvers on one formula and determine statistical significance

• ...

高 とう ヨン うまと

Introduction	Statistical hypothesis testing O	Methodology	Example evaluation	Related work ○	Conclusions
Overvie	w				

2 Statistical hypothesis testing

3 Methodology

4 Example evaluation

5 Related work

6 Conclusions

回 と く ヨ と く ヨ と

Introduction	Statistical hypothesis testing o	Methodology	Example evaluation	Related work ○	Conclusions ●○
Conclus	ions				

Advantages

- Offers more reliable, statistical, information
- Makes better use of the solving times
- Could make identifying good ideas easier
- Drawbacks
 - The method is more complex and harder to understand
 - Higher computational cost (could be acceptable)
 - Doesn't use solving times to the full extent
- Open question
 - What is the most reasonable way to sample from the solver runtime distribution?

- - E + - E +

Introduction	Statistical hypothesis testing	Methodology	Example evaluation	Related work	Conclusions
					00

Thank you!

Mladen NikolićAutomated Reasoning GrOupUniversity of Belgr Statistical Methodology for Comparison of SAT Solvers

< 注 → < 注