
argo-lib: A Generic Platform for Decision

Procedures

Filip Marić1 and Predrag Janičić2

1 e-mail: filip@matf.bg.ac.yu
2 e-mail: janicic@matf.bg.ac.yu

Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11 000 Belgrade, Serbia

Abstract. argo-lib is a C++ library that provides support for using
decision procedures and for schemes for combining and augmenting deci-
sion procedures. This platform follows the smt-lib initiative which aims
at establishing a library of benchmarks for satisfiability modulo theo-
ries. The platform can be easily integrated into other systems. It also
enables comparison and unifying of different approaches, evaluation of
new techniques and, hopefully, can help in advancing the field.

1 Introduction

The role of decision procedures is very important in theorem proving, model
checking of real-time systems, symbolic simulation, etc. Decision procedures can
reduce the search space of heuristic components of such systems and increase
their abilities. Usually, decision procedures have to be combined, to communicate
with heuristic components, or some additional hypotheses have to be invoked.
There are several influential approaches for using decision procedures, some of
them focusing on combining decision procedures [8, 12, 1] and some focusing on
augmenting decision procedures [2, 7]. We believe there is a need for an efficient
generic platform for using decision procedures. Such a platform should provide
support for a range of decision procedures (for a range of theories) and also for
different techniques for using decision procedures. argo-lib platform1 is made
motivated by the following requirements:

– it provides a flexible and efficient implementation of required primitives and
also support for easily implementing higher-level procedures and different
approaches for using decision procedures;

– it is implemented in the standard C++ programming language; the gains are
in efficiency and in taking the full control over the proving process; the stan-
dard, plain C++ implementation is portable to different operating systems
and there is no need for some specific operating system or some specific com-
piler; this also encourages and promotes sharing of code between different
groups and enables converging implementation efforts in one direction;

1 The web page for argo-lib is at: www.matf.bg.ac.yu/~janicic/argo. The name
argo comes from Automated Reasoning GrOup and from Aργω, the name of the
galley of argonauts (this galley was very light and very fast).



– it is “light” (i.e., small in size and stand-alone, requires only any standard
C++ compiler) and fast (capable of coping with complex real-world problems
using the existing or new approaches);

– its architecture is flexible and modular; any user can easily extend it by new
functionalities or reimplement some modules of the system;

– it can work stand-alone but can also be integrated into some other tool
(e.g., a theorem prover, constraint solver, model checking system etc.);

– it enables comparison on an equal footing between schemes for using decision
procedures (especially when the worst-case complexity can be misleading);

– it is publicly available and it has simple, documented interface to all func-
tionalities of the platform;

– it supports a library of relevant conjectures and a support for benchmarking
(here we have in mind motivations, ideas, and standards promoted by the
smt-lib initiative [10]); this enables exchange of problems, results, ideas,
and techniques between different groups.

Although some of the above requirements might seem conflicting, we do be-
lieve that we have built a system that meet them in a high degree. Indeed, instead
of making a new programming language and/or a system that interprets proof
methods and that takes care about “protecting” its user, we opt for C++ and
give the user more freedom and responsibility. Namely, it is sensible to assume
that the user interested in using efficient decision procedures is familiar with
C++ and for him/her it is simpler to install and to use some C++ compiler
then some specific theorem proving platform. Therefore, and also because of ef-
ficient code, we believe that C++ is one of the best (or the best) options for a
generic platform for decision procedures which aims at realistic wider use (both
in academia and in industry).

2 Background

Concerning the background logic (first order classical logic with equality), under-
lying theories, description of theories, and format, argo-lib follows the smt-lib

initiative [10]. The main goal of the smt-lib initiative, supported by a growing
number of researchers world-wide is to produce a library of benchmarks for satis-
fiability modulo theories and all required standards and notational conventions.
Such a library will facilitate the evaluation and the comparison of different ap-
proaches for using decision procedures and advance the state of the art in the
field. The progress that has been made so far supports these expectations.

In terms of logical organisation and organisation of methods, argo-lib fol-
lows the proof-planning paradigm [3] and the gs framework [6]. The gs frame-
work for using decision procedures is built from a set of methods some of which
are abstraction, entailment, congruence closure, and “lemma invoking”. There
are generic and theory-specific methods. Some methods use decision procedures
as black boxes, while some also use functionalities like elimination of variables.
The gs framework is flexible and general enough to cover a range of schemes
for both combining and augmenting decision procedures, including Nelson and
Oppen’s [8], Shostak’s [12], and the approach used in the Tecton system [7].



3 Architecture

Representation of expressions argo-lib contains a class hierarchy for rep-
resenting first-order terms and formulae, with a wide set of low-level func-
tions for manipulating them. Expressions are represented in a tree-like struc-
ture based on the Composite design pattern.

Unification and rewriting argo-lib provides support for first order unifica-
tion. The unification algorithm is encapsulated in the class Unification, so it
can be easily altered. A generic rewriting mechanism (including reduction
ordering) for terms and formulae is also supported. A set of rewrite rules can
be provided directly in the code or it can be read from an external file.

Theories Each (decidable) theory inherits the base class Theory and is charac-
terized by: Signature, Decision procedure, Simplification procedure (a func-
tion that performs theory-specific simplification of a given formula). At the
moment, there is support for PRA (Presburger Rational Arithmetic), FOLeq

(universally quantified fragment of equality), and LISTS (theory of lists).
Goals A goal is an object of the class Goal and is represented by: List of under-

lying theories, Conjecture (a first order logic formula over the combination
of given theories), Status of the conjecture (satisfiable, valid, unsatisfiable,
invalid), Extra signature (the list of uninterpreted symbols). A number of
iterator classes (for iterating over the subgoals) is also provided. For exam-
ple, the class GoalTheoriesIterator is used to iterate through the subgoals of
a goal whose conjecture is a conjunction of (abstracted) literals defined over
several theories — a subgoal for each theory is created and its conjecture
consists of all literals of the initial goal that are defined over that theory.

Methods Each method inherits the abstract base class Method and transforms
a given goal. A method has the following slots: Name, Preconditions (checks
if the method is applicable to a given goal), Effect (a function that describes
the effect of the method to a given goal), Postconditions (conditions that
have to hold after the method application), Parameters (additional param-
eters, e.g., a variable to be eliminated). In argo-lib, the methods don’t
have tactics attached and do not produce object-level proofs. A list of meth-
ods is constantly being expanded. Existing methods are divided in several
groups: general purpose methods (e.g., Rewriting, Prenex, DNF, CNF, Skolem-

ization, Negation, FOLSimplification), theory specific methods (e.g., NelsonOp-

penCCC, FourierMotzkinElimination, ListsSimplification), combination of theo-

ries (e.g., Abstraction, Partitioning, DeduceEqualityAndReplace, Simplification,
UnsatModuloTheories), combination schemes (e.g., NelsonOppenCombination-

Scheme, TectonScheme).
Input format and parsing The native input format for argo-lib is the smt-

lib format (for benchmarks). Description of theories and their signatures are
also read from the files in the (slightly extended) smt-lib format.

Output generating A number of classes (e.g., LaTeXOutput for LATEX output,
SMTOutput for smt-lib output, MathMLOutput for xml output) provide
support for generating output in a readable and easy to understand format.
The level and form of output information can be controlled.



4 Samples and Results

The example below shows the C++ code for Nelson-Oppen’s scheme [8]. The
procedure is entirely based on the use of the argo-lib methods. Notice how the
code faithfully reflects logical, high-level description of the procedure. Further
below we show a part of one argo-lib output. We have tested argo-lib on a
number of examples and the results are very good. For instance, cpu times are an
order of magnitude less then for the prolog implementation reported in [6]. For
instance, proving that ∀x∀y(x ≤ y ∧ y ≤ x + car(cons(0, x))∧ p(h(x)− h(y)) ⇒
p(0)) is valid in combination of three theory takes 0.03s (on PC 700MHz).

void NelsonOppenCombinationScheme::Effect(Goal& g) {

negation.ApplyTo(g);

prenex.ApplyTo(g);

skolemization.ApplyTo(g);

dnf.ApplyTo(g);

GoalDisjunctsIterator gdi(g);

for (gdi.First(); !gdi.IsDone(); gdi.Next())

{ Goal& current_disjunct=gdi.GetCurrent();

abstraction_and_partitioning.ApplyTo(current_disjunct);

while(1)

{ simplify.ApplyTo(current_disjunct);

unsat_modulo_theories.ApplyTo(current_disjunct);

E_BOOL is_trivially_met=current_disjunct.IsTriviallyMet();

if (is_trivially_met==TRUE)

{ current_disjunct.SetTrue(); break; }

else if (is_trivially_met==FALSE)

{ current_disjunct.SetFalse(); g.SetFalse(); return; }

if (!deduce_equality_and_replace.ApplyTo(current_disjunct))

{ current_disjunct.SetFalse(); g.SetFalse(); return; }

}

}

g.SetTrue();

}

1. (c2 = h(c3)) ∧(c1 + −2 ∗ c2 = 0) ∧¬(h(c1 + −1 ∗ c2) = h(h(c3)))
is unsatisfiable in the theory 〈PRA, FOL=〉

if and only if (by the method AbstractionAndPartitioning)

2. ((c1+−2∗c2 = 0) ∧(c1+−1∗c2 = c4)) ∧((c2 = h(c3)) ∧¬(h(c4) = h(h(c3))))
is unsatisfiable in the theory 〈PRA, FOL=〉

if and only if (by the method Deduce Equality and Replace (c2=c4))

3. ((c1 − 2 ∗ c4 = 0) ∧(c1 − c4 = c4)) ∧((c4 = h(c3)) ∧¬(h(c4) = h(h(c3))))
is unsatisfiable in the theory 〈PRA, FOL=〉

if and only if (by the method Unsat Modulo Theory (FOL=))

4. ⊤ The goal has been met



5 Related Work

The work presented in this paper is related to the long line of results and systems
for using decision procedures [8, 12, 1, 2, 7]. Especially, the argo-lib builds on
the gs framework [6]. Also, our work is related to several recent systems — sys-
tems being developed with similar goals (light and efficient support for decision
procedures), including haRVey [9], CVC Lite [4], TSAT++ [14], ICS [5].

6 Conclusions and Future Work

In this paper we presented argo-lib — a C++ library that provides support
for using a range of decision procedures and mechanisms for their combination
and augmentation. The library builds upon ideas from the gs framework and
the smt-lib initiative. We hope that argo-lib will promote exchange of ideas,
techniques, benchmarks and code and so help advance in the field. For further
work we are planning to extend argo-lib by new decision procedures and also
to further improve some low-level modules (e.g., unification). We are planning to
test argo-lib on wide sets of real-world problems and to compare it to the rival
systems. We will also look for its applications in systems of industrial strength.

References

1. C. W. Barrett, D. L. Dill, and Aaron Stump. A Framework for Cooperating
Decision Procedures. CADE-17, LNAI 1831. Springer, 2000.

2. R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic The-
orem Provers: A Case Study of Linear Arithmetic. Machine Intelligence 11, 1988.

3. A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. CADE-9, Springer,
1988.

4. CVC Lite. on-line at: http://verify.stanford.edu/CVCL/.
5. ICS. on-line at: http://www.icansolve.com/.
6. P. Janičić and A. Bundy. A General Setting for the Flexible Combining and

Augmenting Decision Procedures. Journal of Automated Reasoning, 28(3), 2002.
7. D. Kapur and M. Subramaniam. Using an induction prover for verifying arithmetic

circuits. Software Tools for Technology Transfer, 3(1), 2000.
8. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1(2), 1979.
9. S. Ranise and D. Deharbe. Light-weight theorem proving for debugging and veri-

fying units of code. SEFM-03). IEEE Computer Society Press, 2003.
10. S. Ranise and C. Tinelli. The SMT-LIB Format: An Initial Proposal. 2003. on-line

at: http://goedel.cs.uiowa.edu/smt-lib/.
11. H. Rueß and N. Shankar. Deconstructing Shostak. In Proceedings of the Conference

on Logic in Computer Science (LICS), 2001.
12. R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1),

January 1984.
13. Aaron Stump, Arumugam Deivanayagam, Spencer Kathol, Dylan Lingelbach, and

Daniel Schobel. Rogue deicision procedures. Workshop PDPAR. 2003,
14. TSAT++. on-line at: http://www.mrg.dist.unige.it/Tsat.


