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Abstract

In this paper we address the problem of automated classification of

isolates, i.e., the problem of determining the family of genomes to which a

given genome belongs. Additionally, we address the problem of automated

unsupervised hierarchical clustering of isolates according only to their sta-

tistical substring properties. For both of these problems we present novel

algorithms based on nucleotide n-grams, with no required preprocessing

steps such as sequence alignment. Results obtained experimentally are

very positive and suggest that the proposed techniques can be success-

fully used in a variety of related problems. The reported experiments

demonstrate better performance than some of the state-of-the art meth-

ods. We report on a new distance measure between n-gram profiles, which

shows superior performance compared to many other measures, including

commonly used Euclidean distance.

1 Introduction

The number and sizes of genome databases have grown rapidly over the last
few years. A huge amount of information requires new ways for processing
them and using them in efficient ways. Two of the most important problems
are classification and clustering of genomes, i.e., automatically determining a
group to which a previously unseen genome sequence belongs and grouping
the genome sequences into a tree structure according to their similarity. For
example, distinguishing virus subspecies, strains and isolates is important in
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vaccine development, diagnostics, and other fields of biological and medical
research and practice.

The genetic information of every organism is written in the universal code
of DNA sequences, and the DNA sequence of any given organism can be ob-
tained by the standard biochemical techniques. Using these sequences, it is now
possible to catalogue and characterize any set of living organisms. Using such
comparisons we can estimate the place of each organism in the family tree of
living species—the “tree of life.” Phylogenetic inference is the process of de-
veloping hypothesis about evolutionary relatedness of organisms based on their
observable characteristics. There are several techniques for constructing phy-
logenetic trees used in bioinformatics, including techniques on neighbor joining
(e.g., [1, 2, 3]), maximum parsimony (e.g., [3, 4, 5]), maximum likelihood es-
timation (e.g., [6, 7, 8]), and others. Most of them are, directly or indirectly,
based on multiple sequence alignment. Multiple alignment of complete large
genomes can be very expensive and, in addition, it is practically impossible to
align some highly plastic genomes to each other, since they can significantly
differ in size, gene number and gene order. Therefore, there is a need for clas-
sification and clustering techniques that do not rely on sequence alignments. It
is worth pointing that a technique for classification and clustering (like the one
presented in this paper) may not be based upon biological models, but can still
give very good potential for handling these problems. A recent method pre-
sented in [9] does not require multiple alignment and, in that sense, is related
to the methods we propose in this paper, which also rely on n-gram analysis
rather than on sequence alignments.1

In this paper we address the following two problems:

classification: given several families of genomes and a genome, determine the
family to which it most likely belongs;

clustering: define a procedure for genome clustering using exclusively statis-
tical substring properties of their nucleotide bases; such procedure should
be effective, unsupervised, and should not require any expert knowledge
for using it, which implies that it can be fully automated.

This work follows some of the ideas from [10], which includes results on us-
ing a character n-gram technique for the problem of authorship attribution, i.e.,
the problem of identifying the author of an anonymous text, or text whose au-
thorship is in doubt. We address the problem of genome sequence classification
using a similar method and extend the approach and ideas reported in [10].

The results obtained following the proposed technique are very positive and
encouraging. We believe that the technique can find many applications, both
in academic research and in medicine and industry.

1The research presented in [9] was partly done over the same time as our research. We will
discuss the method from [9] (its similarities and differences with respect to our work) also in
Section 7.
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Overview of the paper In Section 2 we give some background information
and basic notions. In Section 3 we introduce the notion of dissimilarity mea-
sures and present several dissimilarity functions. In Section 4 we report on our
experimental results that led us to good dissimilarity functions. In Section 5 we
discuss how the proposed technique can be used for genome sequence classifi-
cation and in Section 6 we discuss how the proposed technique can be used for
genome clustering and we present some experimental results. In Section 7 we
briefly discuss the related work. In Section 8 we compare algorithms proposed
in this paper with other perviously published methods. In Section 9 we present
some plans for future work and in Section 10 we draw final conclusions.

2 Background

2.1 N-grams

Definition 1 Given a sequence of tokens S = (s1, s2, ..., sN+(n−1)) over the
token alphabet A, where N and n are positive integers, an n-gram of the se-
quence S is any n-long subsequence of consecutive tokens. The ith n-gram of S
is the sequence (si, si+1, ..., si+n−1) [11].

Note that there are N such n-grams in S. There are (|A|)n different n-grams
over the alphabet A (|A| is the size of A).

For example, if A is English alphabet, and l string on alphabet A, l =
”life is a miracle” then 1-grams are: l,i,f, ,i,s,a,m,r,c,e; 2-grams are: li,if, fe, e ,
i is, s , a, . . .; 3-grams are: lif, ife, fe , e i, . . . ; 4-grams are: life, ife , fe i, . . .
and so on.

For n ≤ 5 Latin names are commonly used for n-grams (e.g., trigrams) and
for n > 5 numeric prefix are common (e.g., 6-grams).2

N-grams have been successfully used for a long time in a wide variety of
problems and domains, including: text compression (1953) [12], spelling error
detection and correction (1962) [13, 14], optical character recognition (1967)
[15], information retrieval (1973) [16], language identification (1991) [17], au-
tomatic text categorization (1994) [18], music representation (1999) [19], com-
putational immunology (2000) [20], analysis of whole-genome protein sequences
(2002) [21], authorship attribution (2003) [10], protein classification (1993) [22],
(2005) [23] and phylogenetic tree reconstruction (2004)[9].

In many domains, techniques based on n-grams gave very good results. For
instance, in natural language processing, n-grams can be used to distinguish
between documents written in different languages in multi-lingual collections
and to gage topical similarity between documents in the same language [18, 24],
but also in some other problems. In this field, n-grams show some of its good
features:

• robustness: relatively insensitive to spelling variations/errors;

2Since “gram” is a Greek word, some authors prefer using names monogram, digram,

trigram, tetragram, . . . instead of unigram, bigram, trigram, quadrigram, . . ..
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• completeness: token alphabet known in advance;

• domain independence: language and topic independent;

• efficiency: one pass processing; and

• simplicity: no linguistic knowledge is required.

On the other hand, the problem which can appear in using n-grams is ex-
ponential explosion. If A is the Latin alphabet with the space delimiter, then
|A| = 27. If one distinguishes between upper and lower case letters, and also
places significance in numerical digits, then |A| = 63. It is clear that many
of algorithms with n-grams are computationally too expensive even for n = 5
or n = 6 (e.g., 635 ≈ 109, and with larger n the n-gram cardinality grows
exponentially).

2.2 Definitions of Relevant Biological Terms

Definition 2 (Genome) A genome is the complete genetic material of an or-
ganism. Its size is generally given as its total number of base pairs [25].

Definition 3 (Base pair) A base pair consists of two nitrogenous bases (ade-
nine and thymine or guanine and cytosine) held together by weak bonds. Two
strands of DNA are held together in the shape of a double helix by the bonds
between base pairs [26].

Definition 4 (Base sequence) Base sequence is the order of nucleotide bases
in a DNA molecule [26].

Definition 5 (Nucleotide) Nucleotide is a subunit of DNA or RNA consist-
ing of a nitrogenous base (adenine, guanine, thymine, or cytosine in DNA; ade-
nine, guanine, uracil, or cytosine in RNA), a phosphate molecule, and a sugar
molecule (deoxyribose in DNA and ribose in RNA). Thousands of nucleotides
are linked to form a DNA or RNA molecule [26].

Definition 6 (Amino acid) Any of a class of 20 molecules that are combined
to form proteins in living things. The sequence of amino acids in a protein and
hence protein function are determined by the genetic code [26].

Definition 7 (Isolate) Isolate is a genome or a peptide instance.

To clarify the above definition, genome is a general term, while isolate is
genome from concrete specific organism.

A genome (isolate) can be represented as a base sequence. It can be seen
as a word on the alphabet {A,G,C, T,N,R,W, Y,M,K, S,H,B, V,D} where
the dominant letters are {A,G,C, T}. This set of dominant letters represents
standard nucleotide codes3. A represents Adenosine, T — Thymidine, C —

3U is also standard nucleotide code and represents Uridine which is replacement of T in
RNA
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Cytosine, and G — Guanosine. They are dominant because DNA sequence is
made of 4 nucleotide which they represent. Other letters represent ambiguous
nucleotide codes: N ∈ {A,G,C, T}, R ∈ {G,A}, W ∈ {A, T}, Y ∈ {C, T},
M ∈ {A,C}, K ∈ {G,T}, S ∈ {G,C}, H ∈ {A,C, T}, B ∈ {C,G, T}, V ∈
{A,C,G}, D ∈ {A,G, T} [27]. The ambiguous-code letters appear in DNA
sequences due to genetic variability.

2.3 The problems of Classification and Clustering

The problems of classification and clustering are two standard data mining
tasks [28]. Given a set of objects, which is partitioned into a finite set of classes,
classification is the task of automatically determining the class of an unseen
object, based typically on a model trained on a set of objects with known class
memberships. Clustering is the process of grouping data objects together on
the basis of the features they have in common. The objects are grouped into
clusters with the objective of maximizing the intra-cluster similarity and the
inter-cluster dissimilarity between objects. Hierarchical clustering is the clus-
tering in which the clusters do not simply make a partition of the set of objects,
but they are organized into a tree hierarchy, so that any child cluster is a subset
of the parent cluster and the sibling clusters are disjoint. Classification and
clustering are two typical examples of supervised and unsupervised data mining.
Classification is supervised in that it typically requires labelled training data to
train a classifier. Clustering is unsupervised since it is performed on raw input
data with no prior knowledge, or supervision over method. Unsupervised learn-
ing is one of the main strengths of our hierarchical clustering methodology, and
its high performance becomes even more significant when compared to some su-
pervised methods. When applied to genomes, hierarchical clustering produces
a biological taxonomy, which helps us to make sense of the enormous diversity
of living organisms. In any organism, there are many different kinds of fea-
tures to choose from, and in principle all of them can be used. For example, one
could use external anatomy, internal anatomy, chromosomes, molecules, genome
etc. [29] Automatic generation of a phylogenetic tree from a set of genomes can
be regarded as a special case of hierarchical clustering.

Ideally, classification should be based on homology; that is, shared charac-
teristics that have been inherited from a common ancestor. The more recent
ancestor is shared between two species, the more similar they are. However,
since the birth of molecular biology, homologies can now also be studied at
the level of proteins and DNA (DNA-DNA Hybridization, Chromosome Paint-
ing, Comparing DNA Sequences)[30]. Genome analysis gives powerful way to
determine evolutionary relationships. A genome contains a large number of
characters, which for related isolates provide a lot of information useful in ex-
ploring homology. This specification is in a digital form (a string of letters,
i.e., a word on a given alphabet) and can be easily stored on a computer and
compared to genomes of other living things.
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3 Dissimilarity Functions

Dissimilarity measure d is a function on two sets of sequences P1 and P2 (defining
specific profiles) and it should reflect the dissimilarity between these two, i.e.,
it should meet the following conditions:

• d(P,P) = 0;

• d(P1,P2) = d(P2,P1);

• the value d(P1,P2) should be small if P1 and P2 are similar.

• the value d(P1,P2) should be large if P1 and P2 are not similar.

The last two conditions are informal as the notion of similarity is not strictly
defined. In the following text, by similarity of sequences we denote a measure
of similarity of two n-gram distributions.

In [31], some pioneer methods for authorship attribution problem4 and dis-
similarity measures were discussed. In that book, in the chapter about the use
of computers for language processing, a range of problems from some early ideas
about language modelling to cryptography, language evolution and authorship
attribution, are discussed and tackled using character-level n-grams. Specifi-
cally, for authorship attribution problem (i.e., author identification problem as
called in the book), the bigram letter statistic was used. Two texts are compared
for the same authorship, using the dissimilarity formula:

d(M,N) =
∑

I,J

[M(I, J) − E(I, J)] · [N(I, J) − E(I, J)], (1)

where I and J are indices over the range {1, 2, . . . , 26}, i.e., all letters of En-
glish alphabet; M and N are two texts written in English alphabet; M(I, J)
and N(I, J) are normalized character bigram frequencies for one and the other
author and E(I, J) is the same normalized frequency for “the standard En-
glish.” The technique is based on the following idea/expectation: the smaller
d(M,N), the more likely is that author of the text N is the same as the author of
the text M. As the bigram frequencies of “the standard English” are obviously
language-dependent parameters, another dissimilarity measure is given:

d(M,N) =
∑

I,J

[M(I, J) − N(I, J)]2. (2)

Following the ideas from [31], the method is adopted and further developed
in [10] on the task of authorship attribution. Namely, the above dissimilarity
functions (given in equations (1) and (2)) give equal weight to frequency dif-
ferences of all n-grams included in a profile. This may be justified for bigrams
that were used in [31], because all of them were reasonably frequent and the

4Authorship attribution problem is as follows: given texts written by authors A1, A2, . . .
An, and one additional piece of text, guess who of the given authors wrote that piece of text.
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sparse data problem is not an issue. However, with larger n-grams the frequency
varies more and more, so if we used this absolute difference measure the more
frequent n-grams would be emphasized more because the absolute differences in
their frequencies are larger. In order to “normalize” these differences, they are
divided by the average frequency for a given n-gram. This, in [10], led to the
following dissimilarity measure (which we will denote by d1 within this paper):

d1(P1,P2) =
∑

n∈profile

(

2 · (f1(n) − f2(n))

f1(n) + f2(n)

)2

(3)

where f1(n) and f2(n) are frequencies of an n-gram n in the author profile (P1)
and the document profile (P2).

A document profile in [10] is the set of L most frequent n-grams in a set of
documents, with their attached relative frequencies. The value of parameter L
ranges from 20 to 5000. We define genome profiles in the analogous way.

In this paper, we introduce several new dissimilarity measures. Some of them
are based on similar considerations as the above one from [10], while we explore
some additional variations. In the function d1 frequency differences are divided
by the “average” (arithmetic mean value — (f1(n) + f2(n))/2) frequency for a
given n-gram. In some of the functions we introduce in this paper, we divide
frequency differences not by arithmetic mean value, but by geometric mean
value for a given n-gram (

√

f1(n) · f2(n)), or harmonic mean value (2/(1/f1(n)+

1/f2(n))) or quadratic mean value
√

(f1(n)2 + f2(n)2)/2. Also, elements in the
sums may be squared, or we may sum the absolute values of differences, in the
fashion of the d1 measure.

d2(P1,P2) =
∑

n∈profile

2|f1(n) − f2(n)|
f1(n) + f2(n)

(4)

d3(P1,P2) =
∑

n∈profile

(

f1(n) − f2(n)
√

f1(n)f2(n) + 1

)2

(5)

d4(P1,P2) =
∑

n∈profile

|f1(n) − f2(n)|
√

f1(n) · f2(n) + 1
(6)

An additive constant 1 is used in the numerator of the function d4 since
f1(n) or f2(n) can be zero. This function (d4) will be in focus of our attention
in the rest of the paper.

The following two functions are based on the harmonic mean:

d5(P1,P2) =
∑

n∈profile
f1(n)f2(n)6=0

(

(f1(n) − f2(n))(f1(n) + f2(n))

2f1(n)f2(n)

)2

(7)

d6(P1,P2) =
∑

n∈profile
f1(n)f2(n)6=0

|f1(n) − f2(n)|(f1(n) + f2(n))

2f1(n)f2(n)
(8)
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The following functions are based on the geometric mean value without the
use of the additive constant:

d7(P1,P2) =
∑

n∈profile
f1(n)f2(n)6=0

(

f1(n) − f2(n)
√

f1(n)f2(n)

)2

(9)

d8(P1,P2) =
∑

n∈profile
f1(n)f2(n)6=0

|f1(n) − f2(n)|
√

f1(n)f2(n)
(10)

In order to explore the affect of square differences, the following two functions
are constructed as weighted linear combinations of linear and square differences:

d9(P1,P2) =
∑

n∈profile

(

A|f1(n) − f2(n)| + B|f1(n)2 − f2(n)2|
)

(11)

for A(P1,P2) = 100 and B(P1,P2) = 1.

d10(P1,P2) =
∑

n∈profile

(

A|f1(n) − f2(n)| + B|f1(n)2 − f2(n)2|
)

(12)

for A(P1,P2) = 1000 and B(P1,P2) = 0.1.
The following two functions are based on the quadratic mean value:

d11(P1,P2) =
∑

n∈profile

(√
2(f1(n) − f2(n))
√

f1(n)2 + f2(n)2

)2

(13)

d12(P1,P2) =
∑

n∈profile

√
2|f1(n) − f2(n)|

√

f1(n)2 + f2(n)2
(14)

Using the following function we explore the affect of the additive constant
on the geometrical mean based function:

d13(P1,P2) =
∑

n∈profile

(

f1(n) − f2(n)
√

f1(n)f2(n) + 10

)2

(15)

Although following ideas and considerations from [31] and [10], the above
functions are only heuristic measures. Their quality is to be tested and ensured
by experiments that follow.

We also use several functions, based on measures for similarity/dissimilarity
between patterns from [28]:

Euclidean distance:

d14(P1,P2) =

√

∑

n∈profile

(f1(n) − f2(n))2 (16)
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Manhattan distance:

d15(P1,P2) =
∑

n∈profile

|f1(n) − f2(n)| (17)

d16(P1,P2) = 1 −
2
∑

n∈profile f1(n)f2(n)
∑

n∈profile f1(n)2 +
∑

n∈profile f2(n)2
(18)

d17(P1,P2) = 1 −
∑

n∈profile f1(n)f2(n)
∑

n∈profile f1(n)2 +
∑

n∈profile f2(n)2 −∑n∈profile f1(n)f2(n)

(19)

d18(P1,P2) = 1 −
∑

n∈profile f1(n)f2(n)
√

(
∑

n∈profile f1(n)2)(
∑

n∈profile f2(n)2)
(20)

d19(P1,P2) = 1 −
∑

n∈profile f1(n)f2(n)

min((
∑

n∈profile f1(n)2)(
∑

n∈profile f2(n)2))
(21)

4 Evaluation of dissimilarity functions

Following the successful approach of the authorship attribution method pre-
sented in [10], we explore the use of the same or a similar technique to the anal-
ogous problem of classifying genome sequences. Given several groups of genome
sequence and a genome sequence, the task is to determine a group to which the
sequenced most likely belongs. The method can be described in the following
way: For the given set of families Pi, i = 1, 2, . . . , k and the given genome
sequence g, compute the dissimilarity measures D({g},Pi), i = 1, 2, . . . , k. If
the value D({g},Ps) is the smallest one, then the guess is that g belongs to
the family Ps. Thus, the algorithm for classifying genome sequences is triv-
ial and its quality completely relies on the appropriateness of the dissimilarity
measure used. This is essentially the well-known k Nearest Neighbours (kNN)
classification method, with k = 1 [28].

In the following experiments we used isolates with complete genome se-
quences of HIV-1 and HIV-2 virus. HIV (Human Immunodeficiency Virus) is
categorized in the family of viruses known as retroviruses. Within this family of
viruses, HIV is further classified in the genus lentiviruses. HIV-1 and HIV-2 are
the two species of human immunodeficiency viruses. They differ in the nature of
some of the accessory genes.5 Scientists have produced SHIV, simian-human im-
munodeficiency virus, by putting the outer envelope of HIV onto an SIV core.6

5http://biology.fullerton.edu/courses/biol 302/Web/Browser/index.html Understanding
Human Immunodeficiency Virus

6http://www.niaid.nih.gov/daids/vaccine/advoslide/sld001.htm NATIONAL AIDS VAC-
CINE ADVOCATES FORUM Vaccine Basic Science Mary A. Allen, R.N, M.S. November 8,
1997.
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SIV is also a lentivirus, but this virus infects only monkeys. In the following
experiments we use also isolates with complete genome of SHIV virus to make
classification more demanding (instead of SIV, because SHIV closer related to
HIV than SIV). The corpus is arbitrarily chosen to demonstrate our method.
The method is not specially adapted for HIV/SHIV corpora, but it can be used
on other genome collections as well. The method uses complete n-gram profiles
(compared to filtered n-grams; e.g., [22]), and the distance function is a general
function, not adapted for any specific domain.

Corpus 1 The corpus is made out of three groups of isolates with complete
genomes (available from http://www.ncbi.nlm.nih.gov/, as in October 2004):

• a group of 445 isolates of HIV-1;

• a group of 18 isolates of HIV-2 ;

• a group of 8 isolates of SHIV.

For all experiments presented, we used an originally developed software, but
also software package Ngrams written by Vlado Kešelj.7

4.1 Preliminary Experiments

In order to test whether the technique proposed in [10] can be used for genome
sequences classification, we performed the following experiment (using Cor-
pus 1).

Experiment 1 Take one (random) genome sequence (isolate) g from HIV-1
and compute the values:

d({g},HIV-1 \ {g}), d({g},HIV-2), d(g,SHIV)

for different n-gram lengths (n = 1, 2, . . . , 10).
The conjecture is that d({g},HIV-1 \ {g}) is the smallest value for each n

(n = 1, 2, . . . , 10).

We performed the above experiment using the dissimilarity function d1

from [10]). The results are shown in Figure 18. Despite the very high success
rate in the author attribution problem, this function and this experiment did not
meet our expectations. Namely, as can be seen from Figure 1, d({g},HIV-1\{g})
is not smallest among d({g},HIV-1\{g}), d({g},HIV-2), d(g,SHIV) (moreover,
for most n (n=1,...,10) d({g},HIV-1 \ {g}) is the largest value. Hence, this
dissimilarity function cannot be successfully used for genome sequences classifi-
cation.

7Ngrams package is available at http://www.cs.dal.ca/˜vlado/srcperl/Ngrams/.
8All experimental data can be obtained on request from the first author.
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Figure 1: Results for Experiment 1 performed by using dissimilarity function d1

In addition to the attempt with the function d1, we performed Experiment 1
using the dissimilarity function d4 (and the same random genome sequence as
with the function d1). Unlike d1, the function d4 produced positive results.
They are shown in Figure 2 (left). As required, for each n (n = 1, 2, . . . , 10),
the value d({g},HIV-1 \ {g}) is the smallest one.
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Figure 2: Results for Experiment 1 by using dissimilarity function d4 (left) and
the same results in terms of ratio of dissimilarities (right)

The outcome of Experiment 1 using the dissimilarity function d4 is encour-
aging, but might be misleading if the random genome selected (from HIV-1)
within experiment has some specific properties. Therefore, we want to verify
that this is not the case. More precisely, we want to check that d4(g,HIV-1\{g})
is the smallest among the values d4(g,HIV-1 \ {g}), d4(g,HIV-2), d4(g,SHIV)
for all (or almost all) genomes g from HIV-1.

In order to simplify further presentation (and to consider only two values),
the above conditions will be replaced by the equivalent conditions, expressed
in terms of the function Q. The function Q, ratio of dissimilarities,9 over the

9Since all investigated dissimilarity functions are of additive type, it is sensible to use
differences of dissimilarities (rather than ratios of dissimilarities) as a measure of their quality.
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dissimilarity function d and corpora P1,P2,P3, in the following way:

Q(d,P1,P2,P3) =
d(P1,P2)

d(P1,P3)
. (22)

If d(P1,P2) = 0 and d(P1,P3) = 0, we define Q(d,P1,P2,P3) to be 1. If
d(P1,P3) = 0 and d(P1,P2) 6= 0, we define Q(d,P1,P2,P3) to be ∞, where
∞ > r, for any real number r.

The condition d(g,P1,P3) < d(g,P1,P2) is equivalent to Q(d,P1,P2,P3) >
1 (i.e., the conditions d4({g},HIV-1\{g}) < d4({g},HIV-2) and d4({g},HIV-1\
{g}) < d4({g},SHIV) are equivalent to the conditions Q(d4, {g},HIV-2,HIV-1\
{g}) > 1 and Q(d4, {g},SHIV,HIV-1\{g}) > 1. As already shown, these condi-
tions were met for the genome g used in the above described Experiment 1 with
function d4; the results of the experiment in terms of function Q are presented
in Figure 2 (right).

Now, let us describe the next experiment in terms of function Q.

Experiment 2 For all genome sequences g from HIV-1 compute the values:

Q(d, {g},HIV-2,HIV-1 \ {g}) and Q(d, {g},SHIV,HIV-1 \ {g})

for different n-gram lengths (n = 1, 2, . . . , 10).
The conjecture is that Q(d, {g},HIV-2,HIV-1 \ {g}) > 1 and

Q(d, {g},SHIV,HIV-1 \ {g}) > 1 hold for all (or almost all) genomes g from
HIV-1 and for all n-gram lengths (n=1,...10).

Minimal and maximal values for Q(d4, {g},HIV-2,HIV-1\{g}) and for Q(d4, {g},
HIV-2,SHIV\{g}) (for n-grams n=1,...10) are shown in Figure 3. Although the
minimal values for SHIV are not always greater than 1 and although minimal
values for HIV-2 are in some cases close to 1, the results suggest that in most
cases the values Q(d4, {g},HIV-2,HIV-1\{g}) and Q(d4, {g},SHIV,HIV-1\{g})
are safely above 1 (especially for n-grams such that n > 3)10. This suggests that
the classification based on function d4 will work as expected for all of the ele-
ments of HIV-1.

4.2 Comparing Dissimilarity Functions

The results of Experiment 2 suggest that function Q(d,P1,P2,P3) can serve
as a good measure of quality for a dissimilarity function d. Of course, there
are many candidates for dissimilarity function d used for classifying genome
sequences. In this subsection we report on experiments aimed at comparing
different candidates.

However, for different dissimilarity functions their values (and hence values of differences ) can
vary even for several orders of magnitude (especially for larger n). Therefore, for comparing
different dissimilarity functions, we will use the function based on ratios of dissimilarities.

10For small values of n, the n-gram profiles are small and “information poor” so low per-
formance in such cases is not unexpected.
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Figure 3: Minimal and maximal values (over g ∈ HIV-1) for
Q(d4, {g},HIV-2,HIV-1 \ {g}) (left) and minimal and maximal values for
Q(d4, {g},SHIV,HIV-1 \ {g}) (right)

Experiment 3 For all genome sequences g from HIV-1 compute the minimums
of values:

Q(d, {g},P,HIV-1 \ {g})
for different n-gram lengths (n = 1, 2, . . . , 10). Do it for different dissimilar-
ity functions d and for P=HIV-2 and P=SHIV. The conjecture is comparison
between several dissimilarity functions d. The greater are the above minimal
values, the better the function is.

The results of the Experiment 3 are shown in Figure 4. The minimums are
shown only for the functions that gave best results: d4, d9, d10, d16, d17, d18,
and d19. As it can be seen from Figure 4, for all these functions, for n ≥ 4,
minimal values for Q(d, {g},P,HIV-1 \ {g}) are greater than 1. We find these
results to be significant and encouraging. One of their consequences is: if we
use any of these dissimilarity functions for classifying genome isolates (using the
Corpus 1), each HIV-1 isolate will be correctly classified into the group HIV-1.
The isolates are correctly classified when n-gram profiles of length 4 or higher
up to 10 are used.

Having made a selection of the best candidates for dissimilarity functions,
in the next experiment, we will use them for the genome classification problem.

5 Genome Sequence Classification: Experimen-

tal Results

Experiment 4 Randomly select11 two thirds of the genome sequences (isolates)
from HIV-1 as a new corpus PHIV-1, two thirds from HIV-2 as the corpus

11The selection algorithm is as follows: each isolate from the current set can be selected
with the same probability (if there are m isolates in the set, then each can be selected with
the probability 1/m). When one element is selected, then it is deleted from the set, and the
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Figure 4: Results for Experiment 3

PHIV-2, and two thirds from SHIV as the corpus PSHIV.
Using sets PHIV-1, PHIV-2, and PSHIV as training data, we use the re-

maining isolates as the testing data for our kNN classification method. That is,
each g ∈ (HIV-1 ∪ HIV-2 ∪ SHIV) \ (PHIV-1 ∪ PHIV-2 ∪ PSHIV)

will be classified into one of the three classes according to the rules:

• g belongs to HIV-1, if d({g},PHIV-1) is the smallest value

• g belongs to HIV-2, if d({g},PHIV-2) is the smallest value

• g belongs to SHIV, if d({g},PSHIV) is the smallest value.

The guess is correct if g indeed belongs to the returned set of genome se-
quences and wrong otherwise. For each n-gram size and dissimilarity function,
we measure the average classification accuracy.

We performed Experiment 4 for all functions given in Section 3. Table 1
shows the results for the functions selected as good candidates for dissimilarity
functions in §4.2, while Table 2 shows the results for the remaining functions.

As we can see, almost all functions given in Table 1 gave excellent perfor-
mances. Almost each of them, for n ≥ 5 gave (maximal) success rate 99.6%. It
is interesting to note that none of the functions reached 100% success rate for
any n. In almost all cases for which the success rate 99.6% was reached, the very
same isolate was wrongly classified: the isolate AF465242.1. Simion-Human im-
munodeficiency virus isolate AF465242.1 (1B3) was guessed to belong to HIV-1.

process continues until required number of isolates is selected. The random number generator
provided by the C# (Visual Studio 2003) library is used. Before each experiment, the random
generator was initialized using the current absolute time. The same approach was used for
other experiments as well.
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n-gram d4 d9 d10 d14 d15 d16 d17 d18 d19

1 97,0 97,0 97,0 97,4 97,0 21,3 56,2 20,4 86,4
2 98,7 98,7 98,7 98,3 98,7 91,9 96,6 91,4 84,3
3 99,1 99,1 99,1 99,1 99,1 98,3 99,1 98,7 80,0
4 99,1 99,1 99,1 99,6 99,1 99,6 99,6 98,7 49,8
5 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 38,7
6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 94,0
7 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,1
8 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6
9 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6
10 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6 99,6

Table 1: Results for Experiment 4 for functions d4, d9, d10, d14, d15, d16, d17,
d18, d19 (average accuracy in percentages)

n-gram d1 d2 d3 d5 d6 d7 d8 d11 d12 d13

1 3,0 5,1 4,7 57,0 63,4 57,0 63,4 3,0 5,1 16,2
2 5,1 5,1 5,5 63,0 63,4 63,0 63,4 5,1 5,1 26,0
3 5,1 5,1 9,4 62,6 63,4 63,0 63,4 5,1 5,1 9,8
4 5,1 5,1 11,1 65,1 65,1 65,1 67,7 5,1 5,1 11,1
5 5,5 5,5 10,6 66,4 71,9 67,2 81,3 5,5 5,5 11,1
6 4,7 4,3 10,6 12,3 60,4 56,2 84,3 4,7 4,3 10,6
7 1,7 1,7 10,6 1,7 1,7 1,7 1,7 1,7 1,7 10,6
8 1,7 1,7 10,2 1,7 1,7 1,7 1,7 1,7 1,7 10,2
9 1,7 1,7 10,2 1,7 1,7 1,7 1,7 1,7 1,7 10,2
10 1,7 1,7 10,6 1,7 1,7 1,7 1,7 1,7 1,7 10,2

Table 2: Results for Experiment 4 for functions d1, d2, d3, d5, d6, d7, d8, d11,
d12, d13 (average accuracy in percentages)

Indeed, in [32] authors said that in contrast to other SHIV that are composed of
grater than 50% SIV sequences, the sequence AF465242.1 was HIV-1 derived.
The isolate AF465242.1 is more similar to HIV-1 genomes, then other SHIV
isolates in corpus 1. Our classification method confirmed this fact.

Table 2 shows results for the remaining dissimilarity functions. All of them,
including d1, from [10] gave very poor results.

Notice, from the given tables, that bigger n does not necessarily mean better
success rate. Namely, sometimes smaller n-grams can carry information that is
outwith reach for larger n-grams. It is interesting to note that some functions
perform well even with n-grams of size 1. However, our further experiments
have shown that larger n-gram sizes provide profiles that produce more reliable
and consistently good performance.
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To obtain a higher level of confidence, one can perform multiple tests (for
several values for n) while classifying a genome sequence.

An interesting observation is that the classification accuracy for functions
d5, d6, d7, and d8 in Table 2 is relatively good for n ∈ {1, . . . , 6} and then
it suddenly drops to 1.7. All of these functions use only n-grams common to
two profiles, that is only such n-grams n for which f1(n)f2(n) 6= 0. As the n-
grams grow longer, they become more sparse and unique for a particular profile.
Thus, the number n-grams used in summation becomes so small that it become
impossible to successfully detect the genome class.

On the basis of the above experiments, the following functions gave the best
results: d4, d9, d10, d14 and d15. However, on the basis of some additional
experiments (over additional corpora), we decided to use d4 for the rest of this
work. Namely, for instance, on the corpus 2 (see section 8), function d4 gave
better results than the widely used Euclidean distance d14 (d4, d9, d10 and
d15 had 100% of correct classification guesses, against 60% achieved by d14).
Function d4 is good as functions: d9, d10 and d15. We are sure that we would
get very similar results using any other of these functions.

6 Hierarchical Clustering Problem

With positive results in genome sequence classification (Section 5), now we ad-
dress a related, but more complex problem: hierarchical clustering of genome
sequences. Our objective is to define an algorithm that can provide fully un-
supervised hierarchical clustering of genome sequences. This clustering method
would be based on pure statistical n-gram information, without using any addi-
tional domain knowledge, and it would rely on dissimilarity functions described
in the previous text. Since the method does not require any additional domain
knowledge, it can be fully automated. Otherwise, the clustering task would
require a lot of human expert time and may be subject to human errors. Do-
main specific methods need to be tuned toward a specific domain, and when
the data in a domain changes, they may require readjustments. Some evidence
of the soundness of this strategy based on dissimilarity of n-gram profiles was
given in a few other publications, as early as 1993 [22], and this work can be
regarded as a continuation of this methodology. [22] and other related methods
to hierarchical clustering of genome sequences are discussed in section 7.

We introduce two clustering methods. Both, as a result, give a classification
tree, usually called genome tree.12 A genome tree as an unordered binary tree
with genome sequences attached to its leafs. Each leaf has a genome sequence
attached to it. We annotate each node of a genome tree that is not a leaf with a
numerical value that characterizes dissimilarity between successor nodes in the
left and right subtrees, and hence can be used in determining whether these two
subtrees belong to the same output group or not.

Clustering Method 1 At the beginning, the genome tree is empty. The set of

12E.g., http://hc.ims.u-tokyo.ac.jp/JSBi/journal/GIW03/GIW03P005/GIW03P005.html
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input genome sequences is given as an array.
The genome tree T is being built in an incremental manner in the following

way (let us denote the current genome sequence by g):

• if T is empty, then the root of T is constructed and, g is attached to it;

• if the root of T is, in the same time, leaf l, then two its successors are
constructed; l is attached to the left one (and not to the root anymore)
and g is attached to the right one;

• if the root has two subtrees T1 and T2, then let

M = max
g1∈T1,g2∈T2

d(g1, g2) (23)

M1 = max
g1∈T1

d(g1, g) (24)

M2 = max
g2∈T2

d(g2, g) (25)

– if M1 > M and M2 > M , then g will establish a new group: a new
node is constructed with two successors. The old tree T is attached
to the left one, while g is attached to the right one. The constructed
tree is now the new tree T .

– otherwise, if M1 ≤ M and M2 ≤ M , then if M1 < M2, then g
will be inserted to T1 (recursively, using this same algorithm) and if
M1 ≥ M2, then g will be inserted to T2 (recursively, using this same
algorithm).

When the building of the tree T is finished, we can look for genome groups.
Note that for different orderings of isolates processed, one can get different

genome trees and different genome groups.
Within the above algorithm, we can always, for each node and its subtrees

T1 and T2 keep up-to-date the value M = maxg1∈T1,g2∈T2
d(g1, g2). Notice that

this value M for one node is always greater then these values for any of its
successors. Thus, for any given threshold value V , we get one genome cluster-
ing: all genomes that have one predecessor with M < V belong to the same
group. More precisely, determining the final resulting groups within method is
performed in the following way (for a threshold value V): in one node, its value
M is compared with V; if M < V , then the whole tree attached to this node
makes one group; if M ≥ V , then successors of the node and their values M1

and M2 are examined: if either of them is less then V, then these two nodes
define two groups; otherwise (if M1 > V and M2 > V ), the above procedure
applies to these successor nodes. In this way, clustering can be fine tuned via
the threshold value V . Note that, an appropriate threshold value can depend
on the ordering of isolates being processed.

Notice that this clustering method is, in spirit, related to another sort of
dissimilarity measures between two corpora P1 and P2 (which we do not address
in this paper, but may be the subject of our future research):

(P1,P2) = max
g1∈P1,g2∈P2

d(g1, g2) (26)
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Clustering Method 2 The second clustering method is similar to the first
method. The only difference is the way in which the values M , M1 and M2 are
calculated. These values are calculated in the following way

M = d(T1, T2) (27)

M1 = d(T1, g) (28)

M2 = d(T2, g) (29)

where by T we mean the set of all genomes attached to leafs of T .

A tree T generated using the second method does not necessarily fulfill the
condition that the value M for one node is always less then these values for any
of its successors.

Experiment 5 Use the clustering methods 1 and 2 (for particular dissimilarity
function d and particular value n) and apply them to the Corpus 1.

The conjecture is that the groups HIV-1, HIV-2 and SHIV will be detected
and separated.

We performed Experiment 5 for the dissimilarity function d4 and for n = 10.
Results for clustering method 1 are shown in Figure 5. The threshold value 1.75
gives very good clustering with very few incorrectly classified isolates: isolates of
HIV-1 are classified into three groups, of 391 (with one additional SHIV isolate),
22 and 32 elements, isolates of HIV-2 into one group (of 17 elements) and one of
them into the group of 7 SHIV isolates. A deeper biological analysis is required
for explaining why the HIV-1 isolates are separated into three groups and what
makes distinction between them; why one SHIV isolate was classified along with
HIV-1 isolates and why one HIV-2 (V27200.1 Human-immunodeficiency virus
type 2 EHO) was classified along with SHIV isolates. The node N3 imposes
introducing of two subgroups in the node N2 (because M in N3 is greater than
the threshold value) and hence distinguishing the node N4, despite the fact that
the value M in N4 is less than the threshold value. For lower threshold values,
one could get more fine-grained clustering.

Notice that in the classification problem, we had almost 100% success rate,
while in the presented clustering method there were some wrong classification
decisions. The main reasons for them are:

• in the clustering problem, HIV-2 and SHIV isolates are processed along
with HIV-1 isolates;

• corpora are not the same as in the classification experiments; in the clus-
tering problem, corpora are being built incrementally;

• in the clustering problem, pair-wise metrics is used, and not the one used
in the classification problem.
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391×HIV 1

1× SHIV

22×HIV 1
17×HIV 2

7× SHIV

1×HIV 2 32×HIV 1

N1 (M = 1.934)

N2 (M = 1.900)

N3 (M = 1.785) N4 (M = 1.590)

N5 (M = 1.804)

N6 (M = 1.735) N7 (M = 1.761) N8 (M = 1.893)

Figure 5: Results for Experiment 5 for threshold value 1.75 and for Method 1,
for n=10 and for dissimilarity function d4

The results from Experiment 5 for the dissimilarity function d4 and for
n = 10 and for clustering method 2 are shown in Figure 6. As already noted,
a tree T generated using the second clustering method does not necessarily
fulfill the condition value M for one node is always less then these values for
any of its successors. That is why we cannot make fine grained partition based
on suitably selected threshold values (which is one of the weaknesses of this
method). However, for suitably selected nodes (their values M can still help in
that) one can get a tree as one given in Figure 6. The selection of distinguished
nodes for easier comparison in this example of clustering is made in the following
way:

• initially, each element attached to a leaf makes one group;

• then, if dominating elements in groups attached to two neighboring nodes
(sibling-nodes) are equal with respect to known grouping, then then these
two groups are joined together into one, bigger group, attached to the
parent node of these two nodes.

The above method was used also for producing clustering trees shown in Figures
9, 10, 11 and 12 in the following text. It can be noted that the tree produced
by clustering method 2 (Figure 6) is better than the tree produce my method 1
(Figure 5) in the sense that it matches better the known class labels of the
genomes, even though the number of produced leaf clusters is smaller. This can
be expressed more explicitly by the majority class accuracy. Namely, if we label
each cluster with the majority class genome, we see that the tree produced by
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method 1 creates two misclassifications, while the tree produced by method 2
has only one misclassification, giving accuracies of 0.9958 and 0.9979.

It is worth pointing out that the dissimilarity functions explored in this
paper (Section 3) can be used in any distance-based algorithm for producing
trees, such as NJ [1], UPGMA [33] and so on.

N1

N2

N3

N4 N5 N6

420×HIV 1

1× SHIV

25×HIV 1
7× SHIV 18×HIV 2

Figure 6: Results for Experiment 5 for Method 2, for n=10 and for dissimilarity
function d4

7 Related Work

This work follows some of the ideas from [10]. That paper reports on using n-
grams for authorship attribution, i.e., for identifying the author of an anonymous
text, or text whose authorship is in doubt. In that work, there is proposed a
novel method for computer-assisted authorship attribution based on character
level n-gram author profiles, which is motivated by a pioneering method in 1976
[31]. We follow ideas from [10], but apply them to another domain and also
change the dissimilarity functions used.

The text classification problem is also addressed using n-grams in [34], and
the out-of-place measure is used as a dissimilarity function. Very good results
are reported for application of this technique to the classification of text from
the usenet newsgroups articles. In the out-of-place measure, the frequencies in
two corpora are sorted and for each n-gram the position in the sorted list is de-
termined; then for each n-gram the absolute value of difference of these positions
is calculated and then summed for all n-grams. Although the work presented
in [34] is similar in spirit to the work presented here, the key difference is the
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different style of dissimilarity function. In future work, it would be interesting
to compare these two styles of dissimilarity functions.

One of the earlier applications of n-gram based methods in the area of bioin-
formatics is reported in [22] in 1993, where a method for protein classification
based on oligopeptide frequency is presented. Oligopeptide frequencies are n-
gram frequencies over the alphabet of 20 amino acids. They consider shorter
n-grams of up to size n = 4, and use the Mahalonobis distance to select a small
set of 25 characteristic n-grams. In context of this work, the novelty of our
classification approach is in considering the full n-gram profile and thus avoid-
ing the n-gram selection process. The method [22] uses the standard cosine
distance function, which seem to work well on a profile of selected n-grams, but
not for the full n-gram profiles that we use. We conducted an experiment with
this distance function and, indeed, its performance was significantly lower than
several other functions presented here, most notably d4, in the context of full
n-gram profiles. More precisely, the use of cosine similarity measure reached
the maximal accuracy of only 88% for 6-grams on corpus with Tobamovirus (15
complete genomes), Alphavirus(15) and Sobemovirus(9) (see Section 9), versus
100.0% achieved by measures with d4 presented in Table 3.

In [21] n-grams are used for studying languages distribution of members of
“vocabulary” (e.g., standard 20 amino acids). The paper reports on the finding
that some n-grams occur frequently in some organisms while occur rarely in
others. Following this observation, a simple Markovian unigram model from
the proteins of Aeropyrum pernix was trained. When training and test set were
from the same organism, a perplexity (a variation on cross-entropy) enabled
automatic distinguishing between organisms with even the simplest language
model. While in [21] distributions of n-grams are considered, in the work pre-
sented here we reduce the difference of two genomes to a single number, which
serves as a dissimilarity measure.

A relatively similar approach to mitochondrial genome phylogeny is applied
in [35]. Unlike our approach, which relies on n-gram profile similarity measure,
the results in [35] rely on a distance measure based on estimating Kolmogorov
complexity. A known distance-based method for reconstructing phylogenetic
trees is the neighbor-joining method [1].

Karlin and Burge introduced “genome signature” based on dinucleotide (bi-
grams) frequency[36]. They used “relative abundance” by taking the ratio

P (ab)
P (a)∗P (b) where P (ab) is the probability of appearance of the dinucleotide pair

’ab’ and P (a) is the probability of appearance of the nucleotide ’a’. This sub-
traction procedure has been extended to greater n (size of n-grams) in recent
work [9, 37], where the authors developed a method for constructing phyloge-
netic tree, based on n-strings and the neighbor-joining method. The method
in [9] uses genetic n-gram frequencies from which random-background frequen-
cies are subtracted. The n-gram profiles “normalized” in this way are compared
using the cosine distance function (similar to [22]), and the neighbor-joining
method is applied to construct the phylogenetic tree. The novelty and signifi-
cance of our work, compared to this method is in exploring a range of distance
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functions, and in offering two new algorithmic methods for clustering into phy-
logenetic trees, which are compared to the standard NJ method. We believe
that the clustering algorithms presented here are the first of this kind. Our
methods produce rooted tree. Some comparison of trees produced by our meth-
ods and the method of Qi et al. [9] (and some other methods, as well) with the
same corpus of genomes is presented in Section 8. In addition to the problem of
phylogenetic tree construction, we successfully address the problem of genomes
classification using the same dissimilarity functions (Section 5), which repre-
sents an additional validation of our approach. Qi et all [9] tested their method
on prokaryotic genomes sequences [37] but we, also, preformed experiment with
our methods on eukaryotic genome sequences and got very good results (see
Section 8).

Cheng et al. [23] used n-grams for protein classification using the Decision
Tree [38] and the Naive Bayes classifier [39]. Our approach in not based on some
of the known machine learning algorithm. Rather, it is designed in the spirit of
the dissimilarity functions.

In recent work [40], the authors used singular value decomposition (SVD)-
based analysis to generate phylogenetic trees using whole genome protein se-
quences from a family of single-stranded RNA plant viruses. In this approach
authors represented individual protein sequences in a high dimensional space as
vector consisting of all possible tripeptide (3-gram) frequency elements, using all
possible combinations of the 20 individual amino acids. All proteins vector are
then organized into sparse input matrix (A) which is decomposed using SVD
to three matrices (U, Σ, V). A measure of relatedness between protein pairs
is obtained form the angle between pairs of protein vectors defined within the
matrix (V). Using those distances phylogenetic tree is obtained by NJ method.
Our approach in not based only on 3-grams, we did not use all possible n-grams
(but just those which are appeared in genomes), our dissimilarity functions are
different and our methods for clustering is not based on NJ method.

8 Comparison to other methods

In this section we report on comparison results between our methods and some
other methods. For all used test corpora our method gave very good results,
better than the compared methods.

8.1 Comparison to other methods on HIV corpus

We performed the multiple alignment of the genome sequences from corpus 1
using the CLUSTALX program [2]. The sequences are loaded in the FASTA
format and the alignment is performed with the default parameters. The ex-
periment took around 21 computer days on PC 2GHz. The distance matrix is
calculated based on the divergence percentage distance function. Using the same
program, a tree is calculated using the NJ method, and a rooted tree (Figure 7)
is created with the absence of outgroup. The NJ method, as well as parsimony
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and the probabilistic models, produces unrooted trees. Finding the root is a
secondary task, which can be accomplished by adding an outgroup, or species
that is known to be more distantly related to each of the remaining species
than they are to each other. In the absence of a convenient outgroup, there are
somewhat ad hoc strategies, such as picking the midpoint of the longest chain
of consecutive edges, which would be expected to identify the root if deviations
from molecular clock were not too great [41]. Rooted tree has directions and this
directions correspond to evolutionary time. Unrooted tree does not have a root,
and therefore do not specify evolutionary relationships in the same way. They
do not allow the determination of ancestors and descendants. Method, which we
presented in this paper, produce rooted trees. Figure 8 shows the phylogenetic
rooted tree of genomes from corpus 1 using the NJ and CVTree method of Qi,
Luo, and Hao [9]. Using the software package CVTree we obtained distance
matrix for all sequences and then using the NJ method (software neighbor) in
the PHYLIP [3] package we calculated the tree. The final phylogenetic rooted
tree is obtained using the DRAWGRAM software in the PHYLIP package [3]
with the absence of outgroup. It can be seen that our methods gave better
results.

36×HIV-1 285×HIV-1 107×HIV-1
1×SHIV

3×HIV-124×HIV-17×SHIV 18×HIV-2

Figure 7: The phylogenetic tree of genomes from corpus 1 obtained by multiple
alignment (ClustalX) and NJ method

8.2 Corpus with more distantly related genomes

We also tested our method and compared it with other methods on corpora
which contain genome sequences which are more distantly related.

Corpus 2 This corpus is made out of three genus of viruses (randomly selected
from the list of all genus of viruses with available genome sequences13

13Available from: http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi, as in
October 2004
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• Tobamovirus — 15 complete genomes;

• Alphavirus — 15 complete genomes;

• Sobemovirus — 9 complete genomes.

We took half of available genomes of each of those three genus as training
corpus and then ran the classification process for the remaining half. The results,
for n = 1, . . . , 10 and function d4 were again excellent (they are given in Table 3).
These results show that the technique proposed here can be successfully applied
also to the grouping/classification of different species. Tobamovirus, Alphavirus
and Sobemovirus are three groups of viruses which belong to group ssRNA
positive-strand viruses, no DNA stage. There are also other families/genus of
viruses which belong to this group like Astroviridae, Baranviridae, Benyvirus
etc. Our technique can be used to classify specific species into given groups
(families, subfamilies, genus).

Figure 9 shows results of clustering of the viruses from corpus 2 using the
clustering methods 1 and 2, making only very few wrong classifying decisions.
In the first tree, in all nodes that were not distinguished, values M are less than
1.96. The distinguished nodes in the second genome tree are selected according
to the method described on page 19.

Figure 10 shows the phylogenetic tree of genomes from corpus 2 obtained
using the NJ method (Neighbour Joining). The multiple alignment of the com-
plete genome sequences is performed using the CLUSTALX program [2] with
default parameters. NJ method was preformed from CLUSTALX program and
a rooted tree is created with the absence of outgroup. Figure 11 shows the phylo-
genetic rooted tree of Tobamovirus, Alphavirus and Sobemovirus genomes using
the NJ from PHYLIP package and CVTree software package of Qi, Luo, and
Hao [9]. The final phylogenetic rooted tree is obtained using the DRAWGRAM
software in the PHYLIP package [3] with the absence of outgroup. Finally,
Figure 12 shows the phylogenetic rooted tree of genomes from corpus 2 using
multiple alignment (CLUSTALX) and parsimony method (software DNAPARS
form PHYLIP package). Trees in Figure 10, 11 and 12 are drawn with grouped
elements in a uniform way. It can be seen that our methods gave better results.

n 1 2 3 4 5 6 7 8 9 10

66.7% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 3: Classification results for Tobamovirus, Alphavirus and Sobemovirus
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8.3 Mixed corpus with large genome sequences

We have, also performed experiments with genome sequences with length more
then 10 000 base pairs and not only viral genome sequences but also from
higher (eukaryotic) organism. In order to test our methods and compare with
other methods we defined new corpus 3 with more distantly related and longer
genomes sequences.

Corpus 3 This corpus is made out of 4 groups of genomes sequences randomly
selected from NCBI Genome database14. This corpus contains:

• 13 complete genomes of Ebola (prokaryotic-virus) with average length 19
Kb;

• 10 complete genomes of Acelomata (eukaryotic-fungi) with average length
14 Kb;

• 4 complete genomes of Mithondrion (eukaryotic-fungi) with average length
18 Kb and

• 4 complete genomes of Streptomyces (eukaryotic-bacteria) with average
length 12 Kb.

We took half of each of them as training corpus and then ran the classifica-
tion process for the remaining half. The results, for n = 1, . . . , 10 and function
d4 were again excellent (they are given in Table 4). These results show that
the technique proposed here can be successfully applied also to the cases where
we have grouping/classification of different species with long genome sequences
(longer then 10 Kb) and with more groups/classes (more then 3). The corpus in
this experiment contains eukaryotic and prokaryotic genomes sequences and our
classification method gave good results. Figure 13 shows results of clustering
of genomes from corpus 3 using the clustering methods 1 and 2, making only
very few wrong classifying decisions (according to the starting, “official” classi-
fication). Results of method 2 are very good, even in higher level of clustering
we can see that genomes are divided in three clusters: bacteria (Streptomyces),
fungi (Mitohodrion and Acelomata) and virus (Ebola). Proposed classification
and clustering methods gave good results in case when we have very closely
related genomes sequences (corpus 1), but also with moderate related genomes
(corpus 2) and very distantly related genomes (corpus 3. Genomes from cor-
pus 3 are significantly different in size and very large, therefore those genomes
cannot be aligned to each other. It is reason why we did not present phyloge-
netics trees which are produced using multiple alignment. Figure 14 shows the
phylogenetic rooted tree of genomes from corpus 3using the NJ from PHYLIP
package and CVTree software package of Qi, Luo, and Hao [9]. It can be seen
that our methods gave better results.

14http://www.ncbi.nlm.nih.gov/Database/, as in May, 2005
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n 1 2 3 4 5 6 7 8 9 10

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4: Classification results for Ebola, Acelomata, Mitohondrion and Strep-
tomyces

9 Future Work

For our future work, we are planning to further develop techniques presented in
this paper: to further investigate and improve the presented dissimilarity func-
tions and the classification and clustering methods. We will try to explore if
(and how) optimal length of n-grams depends on the size of genomes and cardi-
nality of alphabet. Also, we are planning to apply the technique to other corpora
and domains (not only in bioinformatics). We have already preformed prelim-
inary experiments on three groups of human diseases genes. From database
OMIM [42] we randomly selected tree kind of diseases: Retinoblastoma (disease
of eye), Colon cancer (belongs to group of diseases of the digestive system) and
DiGeorge syndrome (belongs to the group of diseases of the immune system).
We added all available human gene sequences (NCBI database) for those dis-
eases: 7 for Retinoblastoma, 8 for Colon cancer and 6 for DiGeorge syndrome.
A half of each of these groups was selected as the training corpus, and we ran the
classification process on the remaining half. The results, for n = 1, . . . , 10 and
function d4 were again excellent for n > 7 (they are given in Table 5). Figure 15
shows results of clustering of the genes using the clustering methods 1 and 2. As
we can see, the results are not so positive for this kind of problem, but they are
a good starting point for adapting the technique for this domain. In this case
method 1 gave better results. We, also, would like also to test and adapt our
method for computational prediction of microRNA, as well as computational
prediction of exons and introns in eukaryotic genomes.

n 1 2 3 4 5 6 7 8 9 10

66.7% 66.7% 66.7% 66.7% 88.9% 88.9% 66.7% 100% 100% 100%

Table 5: Classification results for human genes

10 Conclusions

In this paper we addressed the problems of automatic isolate classification, and
clustering, i.e., unsupervised genome tree generation. For both of these problems
we use techniques based on n-grams. For the classification problem, we follow
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some ideas from [10], while we changed the key ingredient of the technique —
the dissimilarity function. For the clustering problem we presented two novel
algorithms.

We tested the techniques on the corpus of 445 HIV-1, 18 HIV-2 isolates and
8 SHIV isolates with complete genomes. Results obtained experimentally are
very good: for suitably selected dissimilarity function, accuracy rate for the clas-
sification problem was 99.6%. For the clustering problem, both methods gave
very good results for suitable selected dissimilarity function and suitable chosen
threshold value. Additionaly the method is tested on different corpora with
more distantly related genomes and with corpus which contains mixed prokary-
otic and eukaryotic genomes with length more then 10 Kb. The presented
experimental results suggest that the proposed techniques can be successfully
used. Compared with other methods on the same corpora, the method produced
better results.

Our future plans include improving and testing the techniques on other
corpora and different problem (one such preliminary test with human diseases
genes is presented in Section 9). We believe that the proposed technique can
be used in many practical applications in biological and medical research and
practice.
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54×HIV-1
1× SHIV

8×HIV-1
1×HIV-2

5×HIV-1
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23×HIV-1

5×HIV-1

57×HIV-1

1×HIV-1

1×HIV-1

109×HIV-1
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17×HIV-2 7× SHIV

Figure 8: The phylogenetic tree of genomes from corpus 1 obtained by CVTree
and NJ methods
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15×Tobamo.
14×Alpha.

1×Sobemo.

8×Sobemo.

1×Alpha.

N1 (M = 1.991)

N2 (M =1.969) N3 (M =1.969) N4 (M =1.991)

N1

N2 N3 N4

15×Tobamo. 15×Alpha. 9×Sobemo.

Figure 9: Clustering results for Tobamovirus, Alphavirus and Sobemovirus for
Methods 1 (for threshold value 1.97 ) and Method 2, for n=10 and for dissimi-
larity function d4)

5×Alpha. 9×Sobemo. 15×Tobamo. 2×Alpha.8×Alpha.

Figure 10: The phylogenetic tree of Tobamovirus, Alphavirus and Sobemovirus
genomes obtained by multiple alignment (ClustalX) and NJ method
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1× Sobemo.

2× Tobamo.

1× Tobamo.

1× Tobamo.

6× Tobamo.

4× Tobamo.

8× Sobemo.

1× Tobamo.

Figure 11: The phylogenetic tree of Tobamovirus, Alphavirus and Sobemovirus
genomes obtained by CVTree and NJ methods

2×Alpha. 13×Alpha. 15×Tobamo. 9×Sobemo.

Figure 12: The phylogenetic tree of Tobamovirus, Alphavirus and Sobemovirus
genomes obtained by multiple alignment(ClustalX) and parsimony method
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10×Aceol.
4×Mitoh.

13×Ebola. 4×Strept.

N1 (M = 1.973)

N2 (M =1.917) N3 (M =1.921) N4 (M =1.896)

9×Aceol. 13×Ebola 4×Strept.4×Mitoh.
1×Acelo.

Figure 13: Clustering results for Ebola, Acelomata, Mithodnrion and Strepto-
myces for Methods 1 (for threshold value 1.92) and Method 2, for n=10 and for
dissimilarity function d4

7×Aceol. 4×Mioth.

1×Aceol.

1×Aceol.

2× Ebola

1× Ebola

6× Ebola

3× Ebola

4× Strept

1×Aceol.

1× Ebola

Figure 14: Clustering results for Ebola, Acelomata, Mithodnrion and Strepto-
myces obtained by CVTree and NJ methods
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Figure 15: Clustering results for human disease genes: Retinoblastoma, Colon
cancer, DiGeorge syndrome for Methods 1 (for threshold value 1.992) and
Method 2, for n=10 and for dissimilarity function d4
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