
Automatic Synthesis of Decision Procedures: a

Case Study of Ground and Linear Arithmetic∗

Predrag Janičić

Faculty of Mathematics, University of Belgrade

Studentski trg 16, 11000 Belgrade, Serbia and Montenegro

email: janicic@matf.bg.ac.yu

Alan Bundy

School of Informatics, University of Edinburgh

Appleton Tower, Crichton St, Edinburgh EH8 9LE, UK

email: A.Bundy@ed.ac.uk

Abstract

In this paper we address the problem of automatic synthesis of decision
procedures. We evaluate our ideas on ground arithmetic and Fourier/Motzkin
decision procedure for linear arithmetic, but the approach can be ap-
plied to other domains as well. The approach is well-suited to the proof-
planning paradigm. The synthesis mechanism consists of several stages
and sub-mechanisms. Some of these steps are performed automatically,
while in some steps human assistance is necessary. Our system (adep-

tus), which we present in this paper, synthesized a decision procedure
for ground arithmetic completely automatically and it used some specific
method generators in generating a decision procedure for linear arith-
metic. We believe that this approach can lead to automated assistance in
constructing decision procedures and to more reliable implementations of
decision procedures.

1 Introduction

Decision procedures are often vital in theorem proving [2, 11]. In order to have
decision procedures usable in a theorem prover it is often necessary to have
them implemented not only efficiently, but also flexibly. Also, it is often very
important to have decision procedures for new, user-defined theories. The im-
plementation should also be such that it can be verified in some formal way. For
all these reasons, it would be fruitful if we can automate the process (or, at least,

∗The first author was supported by EPSRC grant GR/R52954/01. The second author was
supported in part by EPSRC grant GR/S01771.

1

all its routine steps) of synthesizing and implementing decision procedures. It
would also help avoiding human mistakes in implementing decision procedures.
In addition, since many steps in different decision procedures can be described
via rewriting, object level proofs can often be also relatively easily derived from
an application of a decision procedure.

Due to their importance in software and hardware verification and, therefore,
in different schemes for combining and augmenting decision procedures, in this
paper we evaluate our techniques on ground arithmetic and linear arithmetic.
As it is interesting and non-trivial, we focus on ideas from the Fourier/Motzkin
procedure for linear arithmetic [13].

In this paper we follow ideas from Bundy’s paper on proof plans for normal-
isations [5]. As discussed in [5], most steps of many decision procedures can be
described via sets of rewrite rules. This observation prepares the way for auto-
matic generation of new decision procedures (given the necessary rewrite rules),
which is vital for user defined theories. Bundy’s programme (slightly modi-
fied) and the synthesis process we present in this paper can be decomposed into
several subproblems:

• Make a method which is capable of doing the following: given two syn-
tactical classes and some rewrite rules, select (if it is possible) a subset of
rewrite rules which is sufficient to transform (or normalise) any member
of the first syntactical class (described by Backus-Naur form (bnf) or,
equivalently, by a context-free grammar) into a member of the second syn-
tactical class. Given the input syntactical class, the kind of a method and
its parameters, the output syntactical class can be automatically gener-
ated in a number of special cases, i.e., for all kinds of methods discussed in
this paper.1 An algorithm which can generate such a method (on the basis
of the given input class, available rewrite rules, the kind of the method,
and the method’s parameters) we call a method generator.

• If the available set of rewrite rules is not sufficient for performing the
transformation from one syntactical class to another, then the method
generator has to report about missing rules; in a planned advanced version
(which is not part of the work presented in this paper), it has to speculate
the remaining necessary rules and/or to redefine/relax the output class;

• there will be different kinds of normalisation methods, e.g., one for re-
moving some function symbol, one for stratification, one for thinning etc.
(see further text and [5] for explanation of these terms.); for each of them,
there is a method generator.

• methods should be designed in such a way that their soundness, com-
pleteness, and termination are guaranteed; the same holds for compound
methods;

1In general, given the input bnf and a set of rewrite rules, the output language is not always
context-free (i.e. it cannot be described via a bnf). Moreover, it is undecidable whether such
output language is context-free. The general problem of determining the output bnf (when
it exists), given the input bnf and a set of rewrite rules is the subject of our current research.

2

• given all necessary methods, it should be possible to combine them (au-
tomatically) into a compound method or, sometimes, into a decision pro-
cedure for some theory;

• since some transformations (required for some decision procedures) are
very complex, building some methods (or some method generators) may
require some human interaction and assistance.

We have implemented several method generators: generators for remove
methods, stratify methods, thin methods, absorb methods and left-assoc meth-
ods and several special-purpose method generators. These generators take a
given Backus-Naur form, transform it into another one, and build a method
which uses some available rewrite rules such that each input formula (which be-
longs to the first bnf) will be transformed into a formula which belongs to the
second bnf. On the set of all these generators, we can perform a (heuristically
guided) search for a sequence of methods which goes from the starting bnf to
a trivial bnf (consisting of only > and ⊥). If the final syntactical class is equal
to {⊥,>}, then the whole of the sequence yields a decision procedure for the
underlying theory (under some assumptions about available rewrite rules). If
such a method can be built, soundness, termination, and completeness can be
easily proved (see §3.1).

The system consisting of the implemented method generators and search
engines we call adeptus (coming from Assembly of DEcision Procedures via
TransmUtation and Synthesis2).

Our first target theory was ground arithmetic over rationals. We had avail-
able all the necessary rewrite rules. adeptus synthesized the decision proce-
dures for this theory completely automatically in around 3 seconds of cpu time
(see more details in §6).

While a decision procedure for ground arithmetic can be also obtained by
exhaustive application of all rewrite rules, our system gives a procedure which
uses their subsets in stages and gives structured proofs (easily understandable
to a human).

Our second target theory was (quantified) linear arithmetic. For this theory
we had to implement three more method generators: one for adjusting the
innermost quantifier, one for isolating a variable, and one for removing a variable
(cross-multiply and add step). The search is performed in three stages and
all three of them give sequences of methods. Combined, these sequences (the
second one in a loop) give a decision procedure for linear arithmetic. adeptus

automatically performed these three stages and synthesized a decision procedure
for linear arithmetic in around 5 seconds of cpu time (see more details in §9).
For some conditional rewrite rules, this decision procedure itself can be used to
prove that their conditions cover all possible cases. We prove that both of the
generated procedures are sound, complete and terminating.

2Also, Adeptus (Lat.) is “one with the alchemical knowledge to turn base metals into
gold”.

3

For some theories this approach gives not only automatically generated de-
cision procedures, but also a higher-level understanding of syntactical transfor-
mations within the underlying theory. We believe that this approach can be
helpful in both easier implementation of decision procedures and their deeper
understanding. The approach can also be used just to construct normalisation
procedures.

Overview of the paper: In §2 we give some basic background and notation
information. In §3 we introduce the notion of normalizers and discuss their
automatic generation. In §4 we present several generic method generators and in
§5 a search engine which uses them. In §6 we report on how we used that search
engine to synthesize a decision procedure for ground arithmetic. In §7 we present
several special-purpose method generators. In §8 we describe a compound search
engine and in §9 we report on how we used it to synthesize a decision procedure
for linear arithmetic. In §10 we present some additional examples. In §11
we discuss some possibilities and limitations in automatic synthesis of decision
procedures. In §12 we discuss related work. In §13 we discuss future work, and
in §14 we draw final conclusions.

2 Background and Notation

2.1 Decidable theories and decision procedures

A theory T is decidable if there is an algorithm (which we call a decision pro-
cedure) such that for an input T -sentence f , it returns yes if and only if T ` f

(and returns no otherwise).

2.2 Presburger arithmetic

Presburger Natural Arithmetic is (roughly speaking) a first-order theory built
up from the constant 0, variables, binary function symbol +, unary function
symbol s and binary predicate symbols <, >, =, 6=, ≤, ≥. Note that nx (where
n is a numeral) can also be considered as in Presburger Natural Arithmetic: nx

is treated as x+· · ·+x, where x appears n times. We denote Presburger Natural
Arithmetic as pna. By analogy we define Presburger arithmetic over integers
(Presburger Integer Arithmetic, denoted pia) and over rationals (Presburger
Rational Arithmetic, denoted pra); these two theories have the additional unary
function symbol −. pra is sometimes referred to as linear arithmetic [2].

There are several decision procedures for pia, including Cooper’s proce-
dure [6]. The Fourier/Motzkin procedure [13] is a decision procedure for pra.
Sometimes, it is referred to as Hodes’ procedure [9]. This procedure has very
important uses and it has been rediscovered a number of times. In theorem
proving, because its worst case complexity is lower than of Cooper’s procedure,
this procedure is often used for the universally quantified fragment of pia, as it
is sound (although incomplete) for it [2].

4

2.3 Backus-Naur form

We can define a set of pia (pna, pra) formulae by a context-free grammar or
in Backus-Naur Form (bnf).

Example 1 Using a bnf we can define pra formulae in the following way:

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f |(∃var : sort)f |(∀var : sort)f
af := >|⊥|t = t|t < t|t > t|t ≤ t|t ≥ t|t 6= t

t := var|rc|rc · t| − t|t + t

var := x1|x2|x3| . . .
sort := rational

(1)
where f denotes the syntactical class of formulae, af the class of atomic for-
mulae, t denotes the class of terms, var variables, and rc denotes rational con-
stants.

In representing some infinite syntactical classes (for instance, the classes
rc and var in the above example) sometimes, for convenience, we use some
additional device and some meta-level conditions.

We will assume that each bnf definition has attached its top class (or start
class). While a bnf definition corresponds to a context-free grammar, this class
corresponds to the start symbol in formal grammars. The language of a bnf is
a set of all expressions that can be derived from the top class. Normally, it is a
class that corresponds to the set of formulae (the class f in the above example).

2.4 Rewrite rules

In the rest of the paper we will assume that during the method generation there
are available some unconditional or conditional rewrite rules. Unconditional
rewrite rules are of the form:

RuleName : l −→ r .

Conditional rewrite rules are of the form:

RuleName : l −→ r if p1, p2, . . . , pn,

where p1, p2, . . ., pn are literals.3 These rewrite rules correspond to some
underlying (background) theory T and the conditions may rely on some theory-
specific properties. For instance, we can have the rewrite rule (corresponding
to pra):

n1x + n2x −→ nx if n = n1 + n2.

In the above rule, the condition n = n1 + n2 is not of a syntactical nature and
hence, in general, we will have to use some semantic knowledge, i.e., we will

3Note that this form can be considered as a normal form of conditional rewrite rules with
arbitrary propositional structure in their conditions.

5

have to use rewriting modulo the underlying theory. However, these conditions
are, usually, very simple and they usually involve only ground literals.

For a rule
RuleName : l −→ r if p1, p2, . . . , pn,

we say that it is sound with respect to theory T if for arbitrary T -formula Φ
and arbitrary substitution ϕ it holds that T ` Φ if T , p1ϕ, p2ϕ, . . . , pnϕ `
Φ[lϕ 7→ rϕ] (where 7→ denotes substitution), and we say that it is complete with
respect to theory T if for arbitrary T -formula and arbitrary substitution ϕ it
holds that T ` Φ only if T , p1ϕ, p2ϕ, . . . , pnϕ ` Φ[lϕ 7→ rϕ]. We say that a
rewrite rule is two-way rule w.r.t. T if it is sound and complete w.r.t. T .

2.5 Syntactical relations

We introduce two syntactical relations: ec (from element of class) and aec

(abstract element of class). ec(b, e, c) holds if and only if a syntactical element
e is an element of a class c in the bnf definition b. For instance, if we denote
by b1 the definition (1) (from Example 1, p5), then it holds that

ec(b1, (∃x : rational)0 = x, f)
and
ec(b1, (0 = x) ∧ (1 = y), f ∧ f)
The relation aec is defined by analogy, but its arguments can also include

some abstract components. For example, it holds:
aec(b1, af ∧ (1 = y), f ∧ f).

2.6 Proof planning and methods

Proof-planning is a technique for guiding the search for a proof in automated the-
orem proving. To prove a conjecture, within a proof-planning system, a method
constructs the proof plan and this plan is then used to guide the construction
of the proof itself [4, 3]. These plans are made up of tactics, which represent
common patterns of reasoning. A tactic’s preconditions and effects are specified
by a method, i.e., a method is a specification of a tactic. A method has several
slots: a name, input, preconditions, transformation, output, postconditions and
the name of the attached tactic.4

Definition 1 A method describes the preconditions for the use of a tactic, the
transformation that corresponds to it and the postconditions (conditions that
hold for the conjecture after the application of the tactic). These conditions and

4In our implementation of the system presented in this paper, we have not implemented
tactics yet. So, our procedures produce meta-level proof plans, not the object level proofs.
However, for most of the methods, implementing tactics would not be difficult, as most of the
required tactics are based on applying given rewrite rules. For some steps (like cross multiply

and add for a decision procedure for linear arithmetic, see §7.4), tactics would be more involved.
Also, for providing tactics and object level proofs, it would be suitable to incorporate adeptus

into some more general system with proof engine, able for running tactics on (e.g., IsaPlanner
built on top of Isabelle).

6

transformation are syntactic properties of the logical expressions manipulated by
the tactic and are expressed in a meta-logic.

A method cannot be applied if its preconditions are not met. Also, with
the transformation performed and the output computed, the postconditions are
checked and the method application fails if they fail.

2.7 Target language

The whole of adeptus is implemented in prolog as a stand-alone system.5 All
generated methods are built in the spirit of the proof planning paradigm (and
implemented in prolog).

2.8 Standardizing apart

For simplicity, in the rest of the paper and in all described normalisation meth-
ods and decision procedures, we assume that, in formulae being transformed,
variables are standardized apart, that is — there are no two quantifiers with
the same variable symbol in one formula.

3 Normalisation Methods

We will describe a number of steps of different decision procedures for ground
arithmetic and for linear arithmetic in a purely syntactical way and in terms
of rewriting (in the spirit of Bundy’s proof plans for normalisations [5]). For
instance, one of the steps in different decision procedures is elimination of equiva-
lence and that step can be described as an exhaustive application of the following
rewrite rule:

f1 ⇔ f2 −→ (f1 ⇒ f2) ∧ (f2 ⇒ f1)
This rule links a pair of classes of formulae, which can be represented in

Backus-Naur Form (bnf) as shown in the following example.

Example 2 Each formula belonging to the following class (af denotes the class
of atomic formulae):

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f |(∃var : sort)f |(∀var : sort)f
can be transformed by using the rewrite rule

f1 ⇔ f2 −→ (f1 ⇒ f2) ∧ (f2 ⇒ f1)
and the resulting formula belongs to the following class f :

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |(∃var : sort)f |(∀var : sort)f .

This way, a description of the effect of a certain normalisation can lead to
an automated synthesis of that normalisation. Namely, given a set of rewrite
rules and bnf form of the input class of formulae, it is possible to automatically
generate certain normalization steps or sequences of normalization steps (and

5The presented system is available on-line from www.matf.bg.ac.yu/~janicic.

7

the corresponding output classes). In the above example, it can be easily shown
that any formula belonging to the first class can be transformed to a formula
belonging to the second class (by exhaustive application of the given rewrite
rule). As we will see, for some theories the whole decision procedure can be
generated on these bases (with a trivial output class, consisting of only two
formulae — > and ⊥).

Definition 2 A Method generator is a procedure with the input consisting of

• a bnf form b of the input expressions;

• a set of rewrite rules R;

• a kind t of the required method (e.g., remove, stratify, etc.)

that generates a method M and a bnf form b′ (of the output expressions). The
method M has a kind t and, by using exhaustive application of rules from R, it
transforms any expression belonging to b to an expression belonging to b′.

We have implemented method generators for several kinds of methods: re-
move, stratify, thin, absorb and left-assoc.

Method generators for most normalizers (normalisation methods) work, in
a sense, in a uniform way: each of them takes the input bnf set (and given
parameters), searches for “problematic” bnf entries (for instance, bnf entries
with occurrences of the symbol that should be eliminated — f := f ⇔ f in
Example 2) and constructs the target output bnf set; after that, a common
algorithm for searching over the set of available rewrite rules is invoked and it
checks if all “problematic” entries can be rewritten in such a way that any input
formula, when rewritten, falls in the target output top class. In addition, this
search mechanism attaches rewrite rules to particular entries (because selected
rewrite rules cannot be applied arbitrarily, as will be illustrated in Example 8,
(p15)). When we are discussing the properties of some method generators, we
consider both their properties and the properties of the generated methods.

3.1 Properties of Method Generators and of Generated

Methods

In this part of the paper we (preliminarily) discuss properties (termination,
soundness and completeness) of method generators and of generated methods
(i.e., normalization methods). We also briefly discuss properties of compound
methods (of methods built from several generated methods).

3.1.1 Properties of method generators

For each method generator we present in this paper it is easy to show that it is
terminating. Method generators are not complete, i.e., they are not guaranteed
to produce the required methods — in some circumstances they fail, as they
cannot find the necessary rewrite rules. Moreover, we don’t claim completeness

8

of all the method generators in a narrower sense — that they produce required
methods whenever it is possible. On the other hand, we can consider soundness
of the method generators, i.e., the issue whether, if a method is generated, then
it meets the given conditions. Soundness of method generators defined in this
way can actually be considered as a set of properties (soundness, completeness,
termination) of the generated methods.

3.1.2 Properties of the generated methods

A normalisation method links two syntactical sets — these two sets should
be equivalent modulo the underlying theory T . In purely syntactical terms,
each formula f1 that belongs to the top class of the input bnf set should be
transformed (in a finite number of steps) into a formula f2 that belongs to
the top class of the output bnf set. Moreover, taking the properties of the
underlying theory T , it should hold that T ` f1 if (and only if) T ` f2. If
the “if” condition holds, then the method is sound (w.r.t. T). If the “only if”
condition holds then the method is complete (w.r.t. T). If these properties are
fulfilled, then the method is terminating, sound and complete.

Termination. For each generated method it must be shown that it is termi-
nating (by considering properties of the rewrite rules used6). For some sorts of
methods, their termination is guaranteed by the way they are generated.

Soundness. We distinguish soundness of a method w.r.t. syntactical restric-
tions and soundness of a method w.r.t. the underlying theory T . If a method
transforms one formula into another one, then it is ensured by the method’s
postconditions that the second one does meet the required syntactical restric-
tions (given by the method specification), so the method is sound w.r.t. syntac-
tical restrictions. In addition, all available rewrite rules (all of them correspond
to the underlying theory T) are assumed to be sound. Thus, since a method
is (usually) based on exhaustive application of some (normally sound) rewrite
rules, it is trivially sound w.r.t. T .

Completeness. We distinguish completeness of a method w.r.t. syntactical
restrictions and completeness of a method w.r.t. the underlying theory T . It
is not a priori guaranteed that a generated method can transform any input
formula (which meets the preconditions) into some other formula (that belongs
to the output class), i.e., it is not guaranteed that the method is complete
w.r.t. syntactical restrictions. Namely, a method maybe uses some conditional
rewrite rules (which cannot be applied to all input formulae). If a method uses
only unconditional rewrite rules or if a method uses conditional rewrite rules
which cover all possible cases, then it can transform any input formula into a
formula belonging to the output class. Completeness of a method w.r.t. T also
relies on the completeness of the rewrite rules used. If a method can transform
any input formula into a formula belonging to the output class and if all the
rewrite rules it uses are complete, then the method is complete w.r.t. T . Note

6Note that these sets of rewrite rules are not always confluent. Moreover, for certain
tasks, such as, for instance, transforming a formula into disjunctive normal form, there is no
confluent and terminating rewrite system [16].

9

that both of these conditions are necessary: for instance, we can build a method
for pia by using rewrite rules for pra; this method will be sound (w.r.t. pia) (for
universally quantified fragment) and it could transform any input formula, but
it will still be incomplete w.r.t. pia (see Example 3). However, such methods
can still be very useful.

Example 3 The formula (∀x)(1 ≥ x ∨ x ≥ 2) is a theorem of pia, but is
not a theorem of pra (i.e., it is valid if x ranges over integers, but is not if x

ranges over rationals). The Fourier/Motzkin decision procedure for pra would
transform (∀x)(1 ≥ x ∨ x ≥ 2) in the following way:

¬(∃x)¬(1 ≥ x ∨ x ≥ 2)
¬(∃x)(1 < x ∧ x < 2)
¬(1 < 2)
1 ≥ 2
⊥
Thus, it is shown that the given formula is not a theorem of pra. This

example shows that Fourier/Motzkin procedure is not complete for pia.

3.1.3 Properties of compound methods

Given a set of generated methods for some underlying theory T , they can be
combined (by a human, or — as we will see — automatically) into a compound
method (for that theory). Compound methods (in this context) can use prim-
itive methods in a sequence or in a loop (but not conditional branching). The
preconditions of a compound method are the preconditions of the first (prim-
itive) method used, and the postconditions are the postconditions of the last
(primitive) method used.7

Termination. If a compound method is based on using a sequence of ter-
minating methods, then it is (trivially) terminating. If it includes a loop, then
some deeper argument is required.

Soundness. Since it relies on the soundness of the used primitive methods,
every compound method is also sound (both w.r.t. syntactical restrictions and
w.r.t. the underlying theory T). Meeting the syntactical restrictions of the
compound method is also ensured by its postconditions.

Completeness. If all the used methods are complete and if the compound
method is terminating, then it is (trivially) complete. More precisely, if a com-
pound method (i) is terminating; (ii) uses only (primitive) methods which never
fail (i.e., the methods which transform any input formula to a formula belong-
ing to the output class) and which use only complete rewrite rules, then that
compound method is complete (w.r.t. T).

Based on the above considerations, we can make a crucial observation: if
a compound method for some theory T has an input bnf set corresponding
to the whole of T and a trivial output bnf set consisting only of > and ⊥,

7This way of constructing the preconditions and postconditions of a compound method is
not adequate in general (for instance, when one has conditional branching) but suffices for
the examples we were working on.

10

then it is a decision procedure for T if it is terminating, sound (w.r.t. T), and
complete (w.r.t. T), while these soundness and completeness properties rely
only on properties of the rewrite rules used. This way, we can, in some case8,
trivially get a proof that some (automatically generated) compound method is
a decision procedure for some theory.

3.2 Simplification of bnfs

Each method generator first tries to simplify the input bnf. By “simplifying”
we mean elimination of non-recursive classes. Namely, if a class (different from
the top class) is not recursive (i.e., it does not occur in its bnf entries) then it
can be eliminated by replacing all its derivations in all positions where elements
of this class occur.

Example 4 We can eliminate the class af from the following definition
f := af |f ∨ f |f ∧ f

af := t = t|t < t
and get

f := t = t|t < t|f ∨ f |f ∧ f

The need for this step is illustrated in Example 5.

Example 5 Consider the following bnf classes:

f := af |¬af |f ∨ f |f ∧ f

af := >|⊥|t = t|t < t
(2)

Let us suppose that there are available the following rewrite rules:
rm_neg_less: ¬(t1 < t2) −→ t2 < t1 ∨ t1 = t2
rm_neg_eq: ¬(t1 = t2) −→ (t1 < t2) ∨ (t2 < t1)
rm_top: ¬> −→ ⊥
rm_bottom: ¬⊥ −→ >

The above rules are sufficient to eliminate ¬ from any formula belonging to
the class f from (2), but it cannot be done within the class f (i.e., ¬ cannot
be removed from the bnf definition of the class f without taking into account
other classes, as in removing the symbol ⇒). However, if we first simplify (as
described above) the given bnf definition, we eliminate the class af and we get
the following bnf definition:

f := >|⊥|t = t|t < t|¬>|¬⊥|¬t = t|¬t < t|f ∨ f |f ∧ f

Now we can eliminate the symbol ¬ from the class f .

3.3 Search for the Necessary Rewrite Rules

Several method generators use the same algorithm for searching for the necessary
rewrite rules. This algorithm is given in Fig. 1.

8If we generate and use some methods which do something more than rewriting, the situ-
ation can be more complicated (see §9 on linear arithmetic).

11

The algorithm tries to find rewrite rules that rewrite the given bnf entry in
such a way that it belongs to the given class of the given definition or to some
of its predecessor classes. Thus, if b0 is an input and b an output bnf definition,
if aec(b0, e, class) and if the bnf entry e is rewritten to e′ by some rewrite rule,
then it has to hold that aec(b, e′, class′), where class′ is either class, or class′

has class as its entry, according to the given bnf (so any expression of class

also belongs to class′) . The need for condition about predecessor clauses is
illustrated in Example 6.

Example 6 Consider the following bnf classes:
f ′ := f |f ′ ∨ f ′

f := f ∧ f |t = t|t < t|¬(t = t)|¬(t < t)
Let us suppose that there are available the following rewrite rules:
rm_neg_less: ¬(t1 < t2) −→ t2 < t1 ∨ t1 = t2
rm_neg_eq: ¬(t1 = t2) −→ (t1 < t2) ∨ (t2 < t1)

The above rules are sufficient to eliminate ¬ from any formula belonging to
the class f ′, but it cannot be done within the class f because the construction
(t < t) ∨ (t < t) does not belong to the class f . However, this construction
belongs to the class f ′ which has f as its entry (i.e., any expression of f also
belongs to f ′, according to the given bnf).

Thus, when we remove a symbol from a bnf class c, we have to check whether
the obtained construction belongs to c or to some other class from which a con-
struction c can be derived. This example illustrates the purpose of checking this
condition.

The convention about considering two or more subexpressions in the same
class to be different objects is necessary in situations like the following. Let us
suppose that there is a rewrite rule

R : F ⇔ F −→ >
and that we want to rewrite the abstract syntactical expression f ⇔ f ; two
occurrences of f generally do not represent the same formula, so we must not
apply the above rewrite rule (i.e., we consider that it is not applicable; in other
words, we consider f ⇔ f as f1 ⇔ f2).

Concerning the step with “checking syntactical conditions”, note that some
of the rewrite rules that the algorithm browses can have conditions. Some
of those conditions may be of a syntactical nature, while some can be of a
semantical nature, i.e., such conditions should be checked modulo a background
theory. The above algorithm (and the whole process of generating methods)
works in a purely syntactical manner and does not reason with respect to any
background theory. This sort of condition can be checked in the final stage,
when the completeness of the generated methods is examined (see p28). See
Example 7 that illustrates these restrictions.

Example 7 Let us suppose that the class f of ground formulae is given in the
following way:

f := f ∧ f |n = n|n < n|true|false

where n denotes the class of numbers. If the following rewrite rules are available

12

Algorithm: Search for rewrite rules

Input: goal bnf definition b, pair (class, bnf entry)

Output: triple (class, abstract element, the rewrite rule name)

• When applying rewrite rules to abstract syntactical elements,

consider subexpressions which are of the same class as different

objects.

• Apply the following steps for selecting appropriate rewrite rules

(for producing e from the given bnf entry such that aec(b, e, class′)
(where class′ is a class such that class′ has class as its entry,

according to b (so any expression of class also belongs to class′):

– if there is one unconditional rewrite rule r which meets the

above condition, then take it and attach it to the current bnf

entry, i.e., make a triple (class, bnf entry, r) which will

serve in generating the required method;

– if there is no one unconditional rewrite rule which meets the

above condition, but there are conditional rewrite rules which

meet the above condition, then check just their syntactical

conditions and attach them all to the current bnf entry, i.e.,

make a triple (class, bnf entry, the names of the rewrite

rules) which will serve in generating the required method;

– if there are no rewrite rules which meet the above condition

for some of the selected bnf entries, then report that there

are some missing rewrite rules.

Figure 1: The algorithm for search over the set of available rewrite rules

rm_ls1: n1 < n2 −→ true if number(n1), number(n2), n1 < n2

rm_ls2: n1 < n2 −→ false if number(n1), number(n2), ¬n1 < n2

then one can eliminate the symbol < from any formula from the class f. The al-
gorithm 1 would find and take the above two rules when trying to build a method
that eliminates <. However, it would only check the conditions number(n1),
number(n2) and not the conditions n1 < n2 and ¬n1 < n2. Namely, the condi-
tions number(n1), number(n2) are of syntactical nature and it suffices to check
that the entity of the class n from the above bnf meets the syntactical restric-
tions given by the predicate number (see p5). On the other hand, during the
method generation, concrete expressions that will be the subject of rewriting can-
not be known in advance, so it is not possible to check semantical conditions,
conditions modulo a background theory (such as n1 < n2) that are sensible only
for concrete elements.

In Example 7, for any two numbers n1 and n2, it holds that n1 < n2 or it
holds that ¬n1 < n2. So, the rules rm ls1 and rm ls2 cover all possible cases,
i.e., they have the coverage property, and, therefore, each expression of the form
n < n can be rewritten (to true or false). However, one has to be careful with
the coverage property. Consider, for instance, the following rules:

r1: a −→ b if f(c)
r2: a −→ b if ¬f(c)

13

Although it always holds that f(c)∨¬f(c), it might be the case that neither
f(c) nor ¬f(c) can be proved, and, hence, neither r1 nor r2 can be applied.

It is not difficult to see that the given algorithm for search over the set of
available rewrite rules is complete, i.e., if there are necessary rewrite rules for
transforming expression from one bnf into an expression of the second bnf,
then the algorithm finds those rules.

3.4 General Form of the Normalisation Methods

We have two groups of method generators: generic method generators and
special-purpose method generators. Special-purpose method generators are de-
signed for use in generating some special kinds of compound methods (say quan-
tifier elimination procedures). Each normalization method has the general form
given in Fig. 2.

name: methodname;

input: f ;

preconditions: ec(b, f, top class) (where b is the input bnf definition);

transformation: exhaustive application of the set of rewrite rules (but only ap-
plying to positions that correspond to the attached syntactical classes); it
transforms f to f ′;

output: f ′;

postconditions: ec(b′, f ′, top class) (where b′ is the output bnf definition).

Figure 2: General form of normalisation methods

4 Generic Method Generators

In this section we describe several kinds of normalisation methods and proce-
dures which can automatically generate them. Most of these methods are based
on ideas from [5]. However, there are some differences in specification of some
of them. In addition, we haven’t used and implemented some kinds of methods
from [5] (reorder, collect, isolate), but we introduced one new kind of method
— absorb. Descriptions of method generators are somewhat simplified.

4.1 Remove Method Generator

Remove is a normalization method used to eliminate a certain function sym-
bol, predicate symbol, logical connective, or a quantifier from a formula. The
method uses sets of appropriate rewrite rules and applies them exhaustively to
the current formula until no occurrences of the specific symbol remain.

For instance, as shown in Example 2 (p7), the bnf definition (1) can be
transformed to the corresponding bnf definition without the symbol ⇔.

14

Example 8 Consider the following class:
f := h(a)|h(b)|g1(a)|g2(b)

where a and b are some (recursive) classes and suppose there are available the
following rewrite rules:

R1 : h(x) −→ g1(x)
R2 : h(x) −→ g2(x)

The above rules are sufficient for eliminating the symbol h and for trans-
forming the above class into the class:

f := g1(a)|g2(b)
However, it cannot be reached by arbitrary use of exhaustive applications of

the given rewrite rules. Indeed, the term h(a) belongs to the class f and it can
be rewritten to g2(a) by R2, but g2(a) does not belong to the class f . Instead, the
rule R1 should have been used and it would give g1(a), which does belong to the
class f . The lesson is that we have to take care about which rule we use in which
situation (i.e., for each construction of syntactical classes). This information
has also to be built into the remove method that we want to construct (but similar
consideration holds for other kinds of methods as well).

The remove method generator is given in Fig. 3.9

The given remove method generator relies on the correctness of the algorithm
for search over the set of available rewrite rules (given in Fig. 1) and on the
correctness of the construction of the output bnf (within the algorithm itself).
This construction is simple and it is not difficult to prove that it succeeds if
(and only if) there is an entry involving the given symbol, while the output bnf

has fewer classes that involve it. Termination of a generated remove method is
guaranteed, as each rewrite applied reduces the number of occurrences of the
given symbol. If all available rewrite rules are sound, the generated method
is also sound. However, recall that we still cannot claim that each generated
method is complete (w.r.t. its underlying theory). Namely, for some steps there
might be some conditional rewrite rules used that do not cover all possible cases
or there might be some rewrite rules used that are not complete w.r.t. this
underlying theory (see 3.1). For instance, if all required rules are found and
all of them are unconditional (and complete w.r.t. the underlying theory), then
the generated method can transform any input formula and it is also complete
w.r.t. the underlying theory.

When checking rewrite rules during the generation of the list of rewrite rules,
note that the full check on conditions is not (and cannot be) performed (because
the generation mechanism works in a purely syntactical way; see Example 7,
p12). That is why the remove method constructed in this way may fail (i.e.,

9While generating remove methods, we could consider only rewrite rules such that their
left hand side include and that their right hand side does not include the given symbol (the
symbol that should be removed). Instead, however, we use the general method for searching
for appropriate rewrite rules (given in Fig. 1) with the same result. We believe that gains
from generality in this context outweigh the losses in efficiency. Anyway, since the generated
output bnf set does not include the critical symbol, it is obvious that all selected rules must
be such that their right hand side does not include the given symbol (so recursively defined
symbols obviously cannot be eliminated this way).

15

Algorithm: Remove method generator

Input: bnf definition b, the symbol to be deleted, the set of available

rewrite rules

Output: remove method, or report on the missing rewrite rules

• Generate the output bnf set in the following way: take the input

bnf definition, find one class that has entries involving the given

symbol (let us call it the target class) delete all bnf entries

(of that class) that include the given symbol (the symbol to be

removed);

• make a set of all deleted bnf entries from the input bnf set (with

the target class), i.e., all bnf entries (of the target class) that

include the symbol to be removed;

• for each such pair ((target class, bnf entry)) call the algorithm

for searching for rewrite rules (the algorithm given in Fig. 1).

If it succeeds

– then construct a method based on exhaustive application of

selected rewrite rules;

– else report on the missing rules.

Figure 3: The algorithm for generating remove methods

its postconditions may fail) even if its preconditions are fulfilled. However,
during the generation process, all relevant rewrite rules are collected and if their
conditions cover all possible cases (i.e., if they meet the coverage property), the
generated method never fails. This holds for other kinds of methods as well.

If the given algorithm succeeds, the selected set of the rewrite rules is termi-
nating (so is the constructed method). Indeed, each application of these rewrite
rules decreases the number of occurrences of the given symbol in the current
formula. Since this number is non-negative, this process will stop after a finite
number of steps.

Example 9 For our example 8, the algorithm would work as follows: the set
of pairs is {(f, h(a)), (f, h(b))} and the goal bnf is: f := g1(a)|g2(b)

When the search algorithm is called for the pair (f, h(a)), it returns (f, h(a), R1),
when it is called for (f, h(b)), it returns (f, h(b), R2). These two triples are used
for guiding rewriting in the method generator.

Example 10 Given the following bnf definition:
f := af | af |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f |(∃var : sort)f |(∀var : sort)f

af := >|⊥|t = t|t < t

t := var|rc|rc · t| − t|t + t

var := x1|x2|x3| . . .
sort := rational

the algorithm from Fig. 3 (implemented in prolog) generates automatically the
remove method (given in Fig. 4) which removes the symbol ¬ from the class f

(sclass defines bnf classes (defined in pure syntactical terms), and inf_class

16

defines infinite classes (see §2.3); two element_of_sclass predicates define
preconditions and postconditions of the method).

——————————————————————————————–
method(rm_neg,la,F,FF) :-

element_of_sclass(

[sclass(f, [f#f, f\f, f=>f, f<=>f, ~false, ~true, ~t<t, ~t=t, false,

true, t<t, t=t, var:rational##f, var:rational\\f]),

sclass(t, [var, re, -t, t+t, re*t]),

sclass(re, [rc, re+re, re*re, -re]),

sclass(var, []),

sclass(rc, []),

inf_sclass(var, _G965, [variable(_G965)]),

inf_sclass(rc, _G977, [number(_G977)])],f,F),

rewrite_wrt_bnf(la,

[sclass(f, [f#f, f\f, f=>f, f<=>f, ~false, ~true, ~t<t, ~t=t, false,

true, t<t, t=t, var:rational##f, var:rational\\f]),

sclass(t, [var, re, -t, t+t, re*t]), sclass(re, [rc, re+re, re*re, -re]),

sclass(var, []),

sclass(rc, []),

inf_sclass(var, _G965, [variable(_G965)]),

inf_sclass(rc, _G977, [number(_G977)])],

[[f, ~false, rm_bottom],

[f, ~true, rm_top],

[f, ~t<t, rm_neg_less],

[f, ~t=t, rm_neg_eq]],F,FF),

element_of_sclass(

[sclass(f, [f#f, f\f, f=>f, f<=>f, false, true, t<t, t=t,

var:rational##f, var:rational\\f]),

sclass(t, [var, re, -t, t+t, re*t]),

sclass(re, [rc, re+re, re*re, -re]),

sclass(var, []),

sclass(rc, []),

inf_sclass(var, _G965, [variable(_G965)]),

inf_sclass(rc, _G977, [number(_G977)])],f,FF).

Figure 4: Example of generated remove method (see Example 10)
——————————————————————————————–

The method rewrites the input formula by using rewrite_wrt_bnf, which
does rewriting with respect to the given bnf. For instance, rewrite_wrt_bnf
rewrites subexpressions which are of the class f (w.r.t. given bnf) and of the
form ~false by using the rewrite rule rm_bottom.

Note that if some elements of the set of pairs cannot be deleted, then a
required remove method cannot be constructed. In that case, the algorithm
reports such pairs, so the user could try to provide missing rewrite rules. For
instance, if, in the above example, the rule rm_top was not available, the gener-
ation mechanism would issue a report given in Fig. 5 (~ stands for ¬). It reports
on the entry for which it failed to find the necessary rewrite rules (and on the
other entries it still has not transformed).

As said before, we don’t claim that the given remove method generator is

17

Failed to find a rewrite rule for: [f, ~true]

Cannot synthesize required method.

Hint: try to provide required rewrite rules for the following syntactical

elements: [[f, ~true], [f, ~t<t], [f, ~t=t]]

Figure 5: Output of remove method generator when it fails

complete (i.e., that it can construct the required remove method whenever it
is possible). However, this algorithm is powerful enough for the case study
presented in this paper.

4.2 Stratify Methods Generator

Stratify is a normalization method used to stratify one syntactical class into
two syntactical classes containing some predicate or function symbols, logical
connectives or quantifiers.

Example 11 A stratify method for moving disjunctions beneath conjunctions
can be constructed if the following rewrite rules are available:

st_conj_disj1: f1 ∧ (f2 ∨ f3) −→ (f1 ∧ f2) ∨ (f1 ∧ f3)
st_conj_disj2: (f2 ∨ f3) ∧ f1 −→ (f2 ∧ f1) ∨ (f3 ∧ f1)

Given the above rewrite rules, a stratify method can be constructed such that
it can transform each formula of the class

f := af |f ∨ f |f ∧ f

into a formula of the (new) class f :
f := f1|f ∨ f

f1 := af |f1 ∧ f1

Stratification methods separate one class into two classes, and in this example
the symbol ∨ is a symbol which stays in the “upper” class (from which the new
one is derived) and is a parameter for the method generator.

The algorithm for constructing stratify methods is given in Fig. 6.
The given stratify method generator correctly constructs possible output

bnfs, i.e., it constructs an output bnf such that one input class is separated into
two classes, one involving symbols from the given set, and the other involving
(only) the remaining symbol from the input class. Termination of the generated
stratify method is guaranteed, as each rewrite applied reduces the number of
the given symbols occurring “below” other symbols (in the expression being
rewritten). Soundness and completeness features of generated stratify methods
are similar to generated remove methods (see also 3.1).

Example 12 Stratify methods can also serve for reordering elements within an
expression. For instance, a stratify method can use the following rule (together
with other necessary rules):

18

Algorithm: Stratify method generator

Input: bnf definition b; rewrite rules; the set of symbols s (the

symbols from s will be in the upper class)

Output: the method in standard form (using the set of triples (class,

abstract element, the rule name)) or fail

• Generate the output bnf set in the following way:

– find a class c in b such that it involves all symbols from s.

– introduce a new class c1

– from the input set take only those entries for c which involve

symbols from s; also add the entry c1;

– all entries for c that weren’t used above, use as entries for

c1, but with all occurrences of c renamed to c1.

• Make a set of ‘‘problematic’’ bnf constructions in the following

way:

– make a set of all bnf entries for c1 that include c1; in each

such bnf entry replace one occurrence of c′ by one entry for

c (different from c1) and then replace all occurrences of c by

c1; do that in all possible ways and make a list of pairs (c, e)
of all for all such syntactic constructions e.

• For each element in the list, call the search algorithm with that

element and the output bnf set as parameters.

• If the search algorithm succeeds, then it returns the triple (head

class, bnf entry, the name of the rewrite rule); delete that

element from the current list and add the obtained triple to the

output list.

Figure 6: The algorithm for generating stratify methods

reorder_plus8: c0 · x0 + c · v −→ c · v + c0 · x0 if v is a variable
different from x0

in order to stratify x0 and rearrange a polynomial in such a way that its sum-
mands involving x0 will be at the end of the expression.

4.3 Thin Method Generator

Thin is a normalization method that eliminates multiple occurrences of a unary
logical connective or a unary function symbol. For instance, we can use the
following rewrite rule:

¬¬f −→ f

in order to transform each formula belonging to
f := af |¬f

to a formula belonging to
f := af |¬af

The algorithm for constructing thin methods is given in Fig. 7.

19

Algorithm: Thinning method generator

Input: bnf definition b; rewrite rules; the symbol F to be ‘‘thinned’’

Output: the method in standard form (using the set of triples (class,

abstract element, the rule name)) or fail

• Select a bnf class c such that it has the entry F (c) and that it

does not have any other entry that involves c

• Generate the output bnf set in the following way: delete the entry

F (c), and for each other entry e add the entry F (e)

• Check if there is a rewrite rule R of the form:

F (F (x)) −→ x

If there are such rewrite rule, then form the triple (c, F(F(c)),

R) (it is of the form (head class, bnf entry, the name of the

rewrite rule)) and use it for building the method in a standard

form; otherwise fail.

Figure 7: Generator for thinning methods

The given thin method generator correctly constructs output bnf: it con-
struct an output bnf by eliminating an entry F (c) and replacing it by (or
keeping) an entry F (e) (as denoted in the algorithm). If the method generator
succeeds, the selected rewrite rule is obviously terminating (each application
of the rule decreases the number of occurrences of symbol F by 2), and so is
the constructed method. Soundness and completeness (w.r.t. the underlying
theory) rely on the properties of the rewrite rules available/used (see also 3.1).

4.4 Absorb Method Generator

Absorb is a normalization method that can eliminate some recursion rules. For
instance, we can use the following rewrite rule:

rm_mult c1 · c2 −→ c3 if c3 = c1 · c2

in order to transform each term belonging to
t := t · rc|rc (where rc denotes rational constants) to a term belonging

to
t := rc

The algorithm for constructing absorb methods is given in Fig. 8.

Example 13 Consider the following class:
t := t · rc|rc|var

Using the notation from the given algorithm, A = {t · rc}, B = {rc}, C =
{rc, var}. According to the algorithm, the new definition of the class t will be:

t := var · rc|rc|var

while the necessary rewrite rules are of the form:
rc · rc −→ rc

(t · rc) · rc −→ t · rc

20

Algorithm: Absorb method generator

Input: bnf definition b; rewrite rules; a function symbol of connective

F.

Output: the method in standard form (using the set of triples (class,

abstract element, the rule name)) or fail

• Select a bnf class c such that all its entries are either of the

form F (c, ci), F (ci, c) (for some function symbol or a connective F;

ci are not equal to c) or does not have c. Let: A be the set of

all F (c, ci) and F (ci, c) entries (for that class); B the set of all

ci, C the set of all entries apart from those in A.

• Generate the output bnf set such that its set of entries for c is

equal to

C ∪
⋃

e∈A,g∈C\B

{e[c 7→ g]}

• Check if there are the following rewrite rules:

– for all ci ∈ B, cj ∈ B:

F (ci, cj) −→ ck

such that ck ∈ B.

– if the set C \ B is nonempty, for all ci ∈ B, cj ∈ B:

F (F (c, ci), cj) −→ F (c, ck)

such that F (c, ci), F (c, cj), F (c, ck) ∈ A and ck ∈ B

– if the set C \ B is nonempty, for all ci ∈ B, cj ∈ B:

F (cj , F (ci, c)) −→ F (ck, c)

such that F (ci, c), F (cj , c), F (ck, c) ∈ A and ck ∈ B

If there are such rewrite rules, then form the rewrite triples

and use them for building the method in a standard form; otherwise

fail.

Figure 8: Generator for absorb methods

The given absorb method generator constructs an output bnf with fewer
recursive rules (than the input bnf). Termination of the generated absorb
method is guaranteed, as each application of the selected rewrite rules decreases
(by 1) the number of occurrences of the symbol F (as denoted in the algorithm).
Soundness and completeness features of generated absorb methods are similar
to the generated remove and stratify methods, i.e., they rely on the properties
of the selected rewrite rules (see also 3.1).

4.5 Left − assoc Method Generator

Left-assoc is one of the normalization methods for reorganising within a class.
If a syntactical class contains only one function symbol or a connective and if
that symbol is both binary and associative, then members of this class can be
put into left associative form using the method left-assoc. For instance, we will
need the left association of addition and the left association of conjunction.

21

Example 14 We can transform the following class
f := f ∧ f |>|⊥

into the following class
f := f ∧ >|f ∧ ⊥|>|⊥

by the use of the following rewrite rule:
left_assoc_conj: f1 ∧ (f2 ∧ f3) −→ (f1 ∧ f2) ∧ f3

The algorithm for constructing left-assoc methods is given in Fig. 9.

Algorithm: Left-assoc method generator

Input: bnf definition b; rewrite rules; the symbol F to be processed

Output: the method in standard form (using the set of triples (class,

abstract element, the rule name)) or fail

• Select a bnf class c such that it has the entry F (c, c)

• Generate the output bnf set in the following way: delete the entry

F (c, c), and for each other entry e add the entry F (c, e)

• Check if there is a rewrite rule R of the form:

F (x, F (y, z)) −→ F (F (x, y), z)

If there are such rewrite rule, then form the triple (c,

F(c,F(y,z)), R) (it is of the form (head class, bnf entry, the

name of the rewrite rule)) and use it for building the method in a

standard form; otherwise fail.

Figure 9: Generator for left-assoc methods

The given left-assoc method generator simply constructs an output bnf with
a symbol F (as denoted in the algorithm) put in left associative form. If the
method generator succeeds, the constructed method is terminating (as the se-
lected rewrite rule is terminating). Soundness and completeness w.r.t. the un-
derlying theory rely on the properties of the rewrite rules available/used (see
also 3.1).

5 Search Engine for Synthesizing Decision Pro-

cedure

Given some method generators, a bnf description of a theory T and a set of
corresponding rewrite rules, a user can go step by step and try to combine
different generated methods. Moreover, an automatic search for compound
methods or for a decision procedure for T can be performed. The goal of the
search process is to generate a sequence of methods such that:

• the output bnf class of the non-final method is the input bnf class of the
next method in the sequence;

22

• the output bnf class of the last method in the sequence is a goal bnf, for
instance, the trivial bnf — consisting of only two entries (> and ⊥ for
the top bnf class).

We will define the search procedure, which is based on a size of bnf and
on a heuristic which controls it. The search procedure tries to find a sequence
of methods that consists of subsequences, such that each of them is of length
less than or equal to a given value M and such that each of them decreases
the measure of the current bnf. The motivation for this heuristic is as follows:
we (normally) look for a sequence of methods that reduces the (appropriately
defined) size of the input bnf. Within that sequence, it might be the case that
some steps do not decrease the size of the current bnf. However, as the whole
of the required procedure decreases the size of bnf, there must be subsequences
such that their last element has lower bnf size than the first one (i.e., each of
these subsequences decreases the size of the current bnf). The maximal allowed
length of these subsequences is controlled by the value M . So, in the generated
procedure there might be some bnf size increasing steps, but the whole of the
procedure would be built from subsequences of length less or equal to M , and
each of them will be bnf size decreasing. It is not likely that M = 1 is a good
choice (i.e., usually not all steps decrease bnf size). The value M = 3 can be
good.

The size of bnf definition is a heuristic measure and we define it as follows:

• the size of a bnf definition is equal to the sum of sizes of all its entries;

• the size of the entry c := c′ is defined as follows:

– each symbol c in c′ adds 100 to the size of c;

– each symbol c′′ (where c′′ is some other class than bnf) adds 10 to
the size of c;

– each other symbol adds 1 to the size of c.

As said, this is a heuristic measure and it can be defined in some other
way. Defined this way, it forces the search engine to try to get rid of recursive
classes,10 and then of the classes which involve some other classes. The trivial,
goal bnf class (consisting of only f := >|⊥) has the size 2.

Example 15 The size of the following bnf definition (corresponding to ground
arithmetic):

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f

af := >|⊥|t = t|t < t|t > t|t ≤ t|t ≥ t|t 6= t

t := rc| − t|t · t|t + t
is 1556.

The size of bnf definition 1 is 2233.

The search algorithm (in a somewhat simplified form) is given in Fig. 10.

10Note that, within the current scope of our system, we don’t deal with mutual recursion
(that can be problematic in many aspects).

23

Algorithm: Search engine for compound methods
Input:

starting bnf definition b,
goal bnf definition b′,
maximal length a sequence M,
maximal length of a current subsequence m,
goal bnf size S for a current subsequence,
prefix sequence of methods p,
rewrite rules,
method generators

Output:

sequence of generated methods (the input bnf class of the first method is
b, the output bnf class of the last method is b′)

• if m = 0, then return with failure;

• for all possible and successful applications of all available method
generators (with the input bnf for methods equal to b)

– let nb be equal to the output bnf of the newly generated method;

– let q be p concatenated by the newly generated method;

– if nb is equal to b′ then report success and return the current
sequence of methods (q);

– let S′ is the size of nb; if S′ < S

∗ then call recursively this algorithm with starting bnf definition
nb, goal bnf definition b′, numbers M and M, q, rewrite rules,
and method generators as input parameters; if it succeeds, then
attach its resulting sequence of methods at the end of q;

∗ else call recursively this algorithm with starting bnf definition
nb, goal bnf definition b′, numbers M and m − 1, q, rewrite
rules, and method generators as input parameters; if it succeeds,
then attach its resulting sequence of methods at the end of q;

• return and report no more solutions.

Figure 10: The algorithm for search over the set of available method
generators

The search algorithm is initially invoked with the starting bnf definition
which corresponds to the whole of the theory T , the trivial goal bnf (consisting
only of > and ⊥), a value M (M is a chosen value, say, 3), the size of the starting
bnf, the empty sequence of methods, and with the set of available (or chosen)
rewrite rules and method generators. The given algorithm can be modified in
such a way that it stops when it finds the first sequence of methods which meets
the given conditions. Also, the algorithm can be modified in such a way that
instead of a specific target bnf b′, the input parameter is some condition on the
goal bnf definition (e.g., “target bnf does not have variables”).

The ordering of method generators is not important for termination and
correctness of the given search algorithm, but it is important for its efficiency.
We used the following ordering: remove, thin, absorb, stratify, left_assoc.
This ordering is based on the nature of these methods (and how they change
the bnf size) and on different tests. When generating all possible methods,

24

all acceptable parameters for method generators have to be generated too. All
possible parameters are generated from the list of all connectives, function and
predicate symbols used in the given bnf. For generators that take sets of sym-
bols, these sets are made as subsets of all symbols.11

Given a finite number of method generators and a finite number of rewrite
rules, at each step a finite number of methods can be generated (there is also
a finite number of possible parameters). Thus, since the algorithm produces
subsequences (of maximal length M) of decreasing sizes (natural numbers) of
corresponding bnf definitions, the given algorithm obviously terminates. If
method generators can generate all methods necessary for building the required
compound method, then the given algorithm can build one such compound
method (for M large enough). If we iterate the given algorithm (for M =
1, 2, 3, . . .), then it will eventually build the required compound method (if it is
possible to build it using the method generators), so that the iterated algorithm
is also complete. However, we can also use it only with particular values for M

(then the procedure is not complete, but it obviously gives much better results
if it used only for an appropriate value for M).

6 Ground Arithmetic

We ran the algorithm given in Fig. 10 (p24), on the bnf definition given in
Example 15 (p23), with M = 3, with the described method generators, and
with rewrite rules available in Appendix A. We set the goal bnf definition to
be the trivial one (f := >|⊥), thus aiming at synthesizing a decision procedures
for ground arithmetic.

The search algorithm took 3.22 seconds of cpu time12 and during the search
there were 48 methods successfully generated (while there are 22 of them in the
final sequence). The search algorithm produced the sequence of methods DP_GA
with the following “overview” (# denotes conjunction and \ denotes disjunction;
the symbol (*) denotes the end of a bnf size decreasing sequence):

——————————————————————————————–

1 remove <=>; Target class: f;

Rules:[[f, f<=>f, rm_equiv]];

Input size: 1556 Output size : 1345 (*)

2 remove =>; Target class: f;

Rules:[[f, f=>f, rm_impl]];

Input size: 1345 Output size : 1144 (*)

3 remove leq; Target class: f;

Rules:[[f, leq(t, t), rm_leq]];

Input size: 1144 Output size : 1123 (*)

4 remove geq; Target class: f;

Rules:[[f, geq(t, t), rm_qeq]];

11One of the specific method generators renames the innermost variable of the input formula
to x0. This distinguished variable name is also used as a possible parameter for generated
methods.

12The system is implemented in swi Prolog; experiments were run on a 256Mb PC 2.4Ghz.

25

Input size: 1123 Output size : 1102 (*)

5 remove neq; Target class: f;

Rules:[[f, neq(t, t), rm_neq]];

Input size: 1102 Output size : 1081 (*)

6 remove >; Target class: f;

Rules:[[f, t>t, rm_gr]];

Input size: 1081 Output size : 1060 (*)

7 remove -; Target class: t;

Rules:[[t, -t, rm_minus]];

Input size: 1060 Output size : 959 (*)

8 stratify [#, \]; Target class: f;

Rules:[[f, ~(f#f), st_neg_conj], [f, ~(f\f), st_neg_disj]];

Input size: 959 Output size : 969

9 thin ~; Target class: f1;

Rules:[[f1, ~(~f1), thin_neg]];

Input size: 969 Output size : 906 (*)

10 remove ~; Target class: f;

Rules:[[f, ~false, rm_bottom], [f, ~true, rm_top],

[f, ~t<t, rm_neg_less], [f, ~t=t, rm_neg_eq]];

Input size: 916 Output size : 858 (*)

11 stratify [\]; Target class: f;

Rules:[[f, f#f\f, st_conj_disj1], [f, (f\f)#f, st_conj_disj2]];

Input size: 858 Output size : 868

12 stratify [+]; Target class: t;

Rules:[[t, t*(t+t), st_mult_plus1], [t, (t+t)*t, st_mult_plus2]];

Input size: 868 Output size : 878

13 left_assoc \; Target class: f;

Rules:[[f, f\f, left_assoc_disj]];

Input size: 878 Output size : 788 (*)

14 left_assoc +; Target class: t;

Rules:[[t, t+t, left_assoc_plus]];

Input size: 788 Output size : 698 (*)

15 left_assoc *; Target class: t1;

Rules:[[t1, t1*t1, left_assoc_mult]];

Input size: 698 Output size : 608 (*)

16 absorbe *; Target class: t1;

Rules:[[t1, rc*rc, rm_mult]];

Input size: 608 Output size : 487 (*)

17 absorbe +; Target class: t;

Rules:[[t, rc+rc, reduce_plus]];

Input size: 497 Output size : 366 (*)

18 remove <; Target class: f1;

Rules:[[f1, rc<rc, rm_ls1], [f1, rc<rc, rm_ls2]];

Input size: 376 Output size : 345 (*)

19 remove =; Target class: f1;

Rules:[[f1, rc=rc, rm_eq1], [f1, rc=rc, rm_eq2]];

Input size: 345 Output size : 324 (*)

20 left_assoc #; Target class: f1;

Rules:[[f1, f1#f1, left_assoc_conj]];

Input size: 324 Output size : 327

21 remove #; Target class: f1;

Rules:[[f1, f1#false, reduce_bool3], [f1, f1#true, reduce_bool1]];

Input size: 327 Output size : 206 (*)

22 remove \; Target class: f;

Rules:[[f, f\false, reduce_bool4], [f, f\true, reduce_bool2]];

Input size: 123 Output size : 2

——————————————————————————————–

26

In the presented overview we give the kind, parameters, target class, the
triples with selected rewrite rules, and input and output size. Note that we
show the input bnf size after and not before simplification (so the output size
is not necessarily equal to the input size of the next one.

In Fig. 11 we illustrate work of the given procedure DP_GA on one example —
we give a sequence of formulae produced by the methods for the input formula
¬(7 ≤ 5) ⇒ ¬(2 · (1 + 3) ≥ 3).

——————————————————————————————–

1 ~leq(7, 5)=> ~geq(2*(1+3), 3)

2 ~(~leq(7, 5))\ ~geq(2*(1+3), 3)

3 ~(~(7<5\7=5))\ ~geq(2*(1+3), 3)

4 ~(~(7<5\7=5))\ ~(3<2*(1+3)\2*(1+3)=3)

5 ~(~(7<5\7=5))\ ~(3<2*(1+3)\2*(1+3)=3)

6 ~(~(7<5\7=5))\ ~(3<2*(1+3)\2*(1+3)=3)

7 ~(~(7<5\7=5))\ ~(3<2*(1+3)\2*(1+3)=3)

8 (~(~7<5)\ ~(~7=5))\ ~3<2*(1+3)# ~2*(1+3)=3

9 (7<5\7=5)\ ~3<2*(1+3)# ~2*(1+3)=3

10 (7<5\7=5)\(2*(1+3)<3\3=2*(1+3))#2*(1+3)<3\3<2*(1+3)

11 (7<5\7=5)\((2*(1+3)<3#2*(1+3)<3)\3=2*(1+3)#2*(1+3)<3)\

(2*(1+3)<3#3<2*(1+3))\3=2*(1+3)#3<2*(1+3)

12 (7<5\7=5)\((2*1+2*3<3#2*1+2*3<3)\3=2*1+2*3#2*1+2*3<3)\

(2*1+2*3<3#3<2*1+2*3)\3=2*1+2*3#3<2*1+2*3

13 ((((7<5\7=5)\2*1+2*3<3#2*1+2*3<3)\3=2*1+2*3#2*1+2*3<3)\

2*1+2*3<3#3<2*1+2*3)\3=2*1+2*3#3<2*1+2*3

14 ((((7<5\7=5)\2*1+2*3<3#2*1+2*3<3)\3=2*1+2*3#2*1+2*3<3)\

2*1+2*3<3#3<2*1+2*3)\3=2*1+2*3#3<2*1+2*3

15 ((((7<5\7=5)\2*1+2*3<3#2*1+2*3<3)\3=2*1+2*3#2*1+2*3<3)\

2*1+2*3<3#3<2*1+2*3)\3=2*1+2*3#3<2*1+2*3

16 ((((7<5\7=5)\2+6<3#2+6<3)\3=2+6#2+6<3)\2+6<3#3<2+6)\3=2+6#3<2+6

17 ((((7<5\7=5)\8<3#8<3)\3=8#8<3)\8<3#3<8)\3=8#3<8

18 ((((false\7=5)\false#false)\3=8#false)\false#true)\3=8#true

19 ((((false\false)\false#false)\false#false)\false#true)\false#true

20 ((((false\false)\false#false)\false#false)\false#true)\false#true

21 ((((false\false)\false)\false)\false)\false

22 false

Figure 11: Sequence of formulae produced by the methods in a decision proce-
dure for ground arithmetic (DP GA)

——————————————————————————————–

The procedure DP_GA is sound and terminating (as all generated methods
are sound and terminating and there is no loop). Note, however, that we don’t
claim that it is complete as there are some conditional rewrite rules used. For
instance, in step 16 of the procedure DP_GA, the conditional rule rm_mult is
used, but it is still not shown that its condition covers all possible cases, which
the user can show by proving:

(∀c1 : rational)(∀c2 : rational)(∃c3 : rational)(c3 = c1 · c2)

In step 17 of the procedure DP_GA, the conditional rule reduce_plus is used,

27

but it is still not shown that its condition covers all possible cases, which the
user can show by proving:

(∀c1 : rational)(∀c2 : rational)(∃c3 : rational)(c3 = c1 + c2)

It is very easy to prove that the above conjectures are theorems of pra.
Moreover, the second one can be proved by the decision procedure DP_LA for
linear arithmetic (which we also automatically generated and we report on that
in the subsequent text).

As another example, in step 19, the conditional rewrite rules rm_eq1 and
rm_eq2 are used, but it is not shown that their conditions cover all possible
cases, which the user can show by proving that for any two rational numbers
c1 and c2, either c1 = c2 or ¬(c1 = c2) can be proved as a theorem of linear
arithmetic (i.e., there always holds one of them, and one can decide which).
Notice that this is not equivalent to a conjecture:

(∀c1 : rational)(∀c2 : rational)(c1 = c2 ∨ ¬(c1 = c2))

but is rather a metha-theorem of linear arithmetic. However, for all these con-
jectures (concerning the coverage property) the user can easily ensure they are
valid.

This leads us to conclude that the procedure DP_GA is correct.

Theorem 1 The procedure DP_GA for ground arithmetic is terminating, sound
and complete, i.e., it is a decision procedure for ground arithmetic.

Proof sketch. Since all methods in DP_GA use only sound and complete
rewrite rules, all of them are sound and complete, and hence, the whole of the
procedure is sound and complete. In each method, either unconditional rules
are used or conditional rules that cover all possible cases. Thus, all methods
always succeed. As discussed in the previous text, each of the used methods
is terminating. There are no loops, so termination of individual methods is
sufficient for termination of DP_GA. All in all, the procedure DP_GA terminates,
it transforms an arbitrary input (ground arithmetic) formula Φ into the resulting
formula > or ⊥, while the resulting formula is > if and only if Φ is a theorem
in ground arithmetic.

7 Special-Purpose Method Generators

In this section we describe four special-purpose method generators. The first
one of them (adjusting the innermost quantifier) can be used for a quantifier
elimination procedure for any theory, while the remaining three are specific for
linear arithmetic. Note, however, that it is essential to have these generators
(despite they are theory-specific): they can be used in an automatic search
process and generate the required methods with the given preconditions (which
are not known in advance).

28

7.1 Method Generator for Adjusting the Innermost Quan-

tifier

This generator generates a method which transforms a formula in prenex normal
form (and with variables) in the following way: if its innermost quantifier is
existential, then keep it unchanged; if its innermost quantifier is universal, then
rewrite the formula

(Qx1)(Qx2) . . . (Qxn)(∀x)f

to a formula

(Qx1)(Qx2) . . . (Qxn)¬(∃x)¬f

by using the following rewrite rule:
rm_univ: (∀x)f −→ ¬(∃x)¬f

The motive of this method is to deal only with elimination of existential
quantifiers.

This method is generated in such a way that it also always (both when the in-
nermost quantifier is universal and when the innermost quantifier is existential)
renames the innermost variable to x0, assuming that there was no a variable x0

already (if there is, then that variable will be renamed). That way it is always
easily known what variable is the innermost one.

7.2 One-side Method Generator

This generator generates (if the input bnf admits that) a method which trans-
forms all (linear arithmetic) literals (with given predicate symbols) in such a
way that each of them has 0 as its second argument. For instance, if we take
symbols <, >, ≤, 6=, ≥, = as parameters, then after applying that generated
method each literal (that had one of these predicate symbols) will have one of
the following forms: t < 0, t > 0, t ≤ 0, t 6= 0, t ≥ 0, t = 0.

Example 16 The following rules
one_side1: t1 = t2 −→ t1 + (−1) · t2 = 0 if t2 6= 0
one_side2: t1 < t2 −→ t1 + (−1) · t2 < 0 if t2 6= 0

are sufficient to transform all literals to one-side form if they have only predicate
symbols = and <.

7.3 Method Generator for Isolating a Variable

This generator generates (if the input bnf admits that) a method which isolates
a distinguished variable x0 in all (linear arithmetic) literals (that distinguished
name is normally introduced by the method that adjust the innermost quanti-
fier). After applying that method, each of the literals either does not involve x0

or has one of the forms: νx0 = γ, x0 = γ, λx0 < α, x0 < α (where x0 is the
innermost quantifier). This method will use such rewrite rules as:

isolate2: t + x0 = 0 −→ x0 = −t

isolate3: t + c · x0 < 0 −→ c · x0 < −t

29

7.4 Method Generator for Removing a Variable

The, so-called, cross multiply and add step is an essential step of the Fourier/Motzkin
style procedure. It is applied in situations where the current formula is in prenex
normal form (while ¬ can precede the innermost quantifier if it is an existential
one), its quantifier free part is in disjunctive normal form (or negation of dis-
junctive normal form) and in each disjunct, each of the literals either does not
involve x0 or has one of the forms: νx0 = γ, x0 = γ, λx0 < α, x0 < α (where x0

is the innermost quantifier). It consists of the following steps for each disjunct:

• if there is an equality of the form νx0 = γ where ν 6= 0 (or x0 = γ

for ν = 1), then rewrite each atomic formulae of the form νix0 = γi

to νiγ = νγi, rewrite each atomic formulae of the form λix0 < αi to
λiγ < ναi (if ν > 0) and to λiγ > ναi (if ν < 0), and then delete the
literal νx0 = γ; that is, rewrite

νx0 = γ ∧
∧

k

νkx0 = γk ∧
∧

i

λix0 < αi ∧
∧

l

φl

(where φl are literals not involving x0) to (if ν > 0):

∧

k

νkγ = νγk ∧
∧

i

λiγ < ναi ∧
∧

l

φl

or to (if ν < 0):

∧

k

νkγ = νγk ∧
∧

i

λiγ > ναi ∧
∧

l

φl

• if there is no equality of the form νx0 = γ, then for each pair of literals
λix0 < αi, µjx0 < βj (where λi > 0 and µj < 0) add the new literal
λiβj > µjαi, and then delete all literals of the form λix0 < αi, µjx0 < βj ;
that is, rewrite

∧

i

λix0 < αi ∧
∧

j

µjx0 < βj ∧
∧

l

φl

(where λi > 0, µj < 0, and φl are literals not involving x0) to

∧

i,j

λiβj > µjαi ∧
∧

l

φl

After performing this step, the variable x0 does not occur in the current
formula and so the corresponding quantifier can be deleted.

It is not very difficult to prove that this transformation is both sound and
complete for pra [9].

We have implemented the generator which takes a given bnf and tries to
build a method which performs the cross multiply and add step to formulae
belonging to that bnf.

30

8 Compound Search Engine for Synthesising De-

cision Procedures

The search for a decision procedure based on quantifier elimination is performed
in three stages:

• the first stage is reaching the bnf for which the method for adjusting the
innermost quantifier (changing the innermost universal quantifier into an
existential one) is applicable (i.e., reaching a formula in prenex normal
form that has quantifiers);

• the second stage continues while the variable elimination method is appli-
cable (in each loop one variable is being eliminated); note that the output
bnf of this stage has to be a subset of its input bnf;

• the third stage starts with the output bnf of the first stage, but with
all entries involving variables and quantifiers deleted (it is the bnf of the
current formula after the loop described as the second stage); its goal bnf

definition is the trivial one (i.e., consisting only of > and ⊥).

For each of these stages we use the algorithm given in Fig. 10 (p24) (modified
in order to accept not only a fixed goal bnf definition, but also weaker specified
bnf).

In this search procedure we use all method generators with priority given to
the special-purpose method generators.

This compound search is aimed at synthesizing decision procedures based
on quantifier elimination. For other underlying techniques or domains, new
compound search mechanisms should be defined.

9 Linear Arithmetic

We used the approach described in the previous section on the bnf definition
given in Example 1 (p5), with M = 3 for the first and the third stage, with
M = 5 for the second stage13, with all described method generators, and with
the rewrite rules given in Appendix A.

The search algorithm took 5.4 seconds of cpu time and during the search
there were 89 methods successfully generated (while there are 51 of them in the
final sequence). The search algorithm produced a sequence of methods, i.e., a
procedure DP_LA, with the “overview” given in Appendix B (p41) (dashed lines
divides three stages; ## denotes universal quantifier and \\ denotes existential
quantifier).

In Appendix C, we illustrate the work of the generated procedure DP_LA on
one example — we give a sequence of formulae produced by the methods for
the input formula (∃x : rational)(x > 0).

13For lower values of M the system failed to generate the required procedure.

31

Theorem 2 The procedure DP_LA for linear arithmetic (given in Appendix B
(p41) is terminating, sound and complete, i.e., it is a decision procedure for
linear arithmetic.

Proof sketch. Each of individual methods used in the generated procedure
DP_LA is terminating. Since each loop eliminates one variable and since there are
a finite number of variables in the input formula, the loop terminates. Hence,
the procedure DP_LA is terminating.

Since all methods in DP_LA use only sound rewrite rules, all of them are
sound, and hence, the whole of the procedure is sound.

The completeness relies on completeness of the rewrite rules used, but also
on coverage property for the methods that use conditional rewrite rules. It is
easy to see (similarly as in the generated procedure for DP_LA) that all required
coverage properties are fulfilled. (moreover, some of the coverage properties can
be proved by the generated procedure itself, which is, of course, acceptable,
as we know that the procedure is sound). Therefore, in each method, either
unconditional rules are used or conditional rules that cover all possible cases.
Thus, all methods always succeed and all methods are complete. Hence, the
procedure DP_LA is complete (see also subsection 3.1).

All in all, the procedure DP_LA terminates, it transforms an arbitrary in-
put (linear arithmetic) formula Φ into the resulting formula > or ⊥, while the
resulting formula is > if and only if Φ is a theorem in linear arithmetic.

We don’t claim that the generated procedure DP_LA is the shortest or the
most efficient one. However, we doubt that a decision procedure for linear arith-
metic can be described correctly in some much shorter way. It also shows that
it might be non-trivial for a human programmer to implement this procedure
without flaws and bugs (even with provided the code for the key step: cross
multiply and add). Namely, we believe that any implementation (at least, any
understandable implementation) of Fourier/Motzkin’s procedure has around 50
steps, and, despite the fact that the step cross multiply and add is the most
complex one, the probable flaws are rather in correctly combining the remain-
ing steps.

10 Additional Examples

The proposed approach can be used for extensions of linear arithmetic with user
defined facts.

Example 17 A “positive difference” function p(x, y) is defined in the following
way:

p(x, y)
def
=

{
x − y, if x ≥ y

0, if x < y
(3)

By using the conditional rewrite rules:

p(x, y) −→ x − y if x ≥ y

p(x, y) −→ 0 if x < y
(4)

32

we can synthesize a decision procedure for linear arithmetic augmented by the
function p.

The system presented in this paper can be used not only for producing deci-
sion procedures, but also different normalisation procedures (and help in imple-
menting routine procedures, but procedures still very much subject to making
implementation flaws). The following example illustrates one such normalisa-
tion for the theory of lists.

Example 18 Let us consider the following bnf:

t := nil|var|append(t, t)|rev(t)|qrev(t, t)
var := x1|x2|x3| . . .

(5)

and the set of rewrite rules:

qrev(x, y) −→ append(y, rev(x))
rev(append(x, y)) −→ append(rev(y), rev(x))

rev(rev(x)) −→ x

append(x, append(y, z)) −→ append(append(x, y), z)

(6)

Our system can be used to produce the following normal form:

t := nil|var|rev(nil)|rev(var)|append(t, nil)|append(t, var)|
append(t, rev(nil))|append(t, rev(nil))

var := x1|x2|x3| . . .
(7)

The normalisation consists of the following steps:
1. remove qrev

2. stratify append

3. thin rev

4. left-assoc append

The approach can be also used for constructing procedures for computing
derivations, differentials and other similar operations over elementary functions.

In a similar manner, we believe that it will be possible to construct a cut-
elimination procedure for Gentzen’s sequent calculus [8] or, at least, fragments
(e.g., propositional fragment) of such a procedure (that is a nice example of
plausible normalisation). That application of our system is the subject of our
current investigation.

11 Realm of the Approach and Further Automa-

tion

In §5 and §7 we presented a range of method generators. In each of them, we
use a method kind, input bnf and some set of rewrite rules, and used them

33

to generate a required method (with some output bnf). However, it would be
fruitful if we could start with an input bnf and look at bnfs (and also methods)
which could be obtained by subsets of the available rewrite rules. Thus, it is
interesting to consider whether for a given bnf and a set of (terminating) rewrite
rules we can always compute the output bnf. This general problem is the
subject of our current research and there are techniques that cover many cases.
However, the answer for the general case is negative, since, in a general case,
the resulting set of expressions (obtained from the initial set of expressions by
exhaustive rewriting) is not necessarily definable by a bnfs (i.e., by a context-
free grammar).

Given a terminating set of unconditional rewrite rules R, let R(x) denote
the result of exhaustive application of rules from R to the expression x.

Example 19 Let T be a bnf class defined in the following way:

T := f(a, f(c, b))|f(f(a, T), f(c, b))

Let R be a set consisting of the following rewrite rules:

r1 : f(x, f(y, z)) −→ f(f(x, y), z)

r2 : f(f(x, c), b) −→ f(f(x, b), c).

The above set of rewrite rules is, obviously, terminating. Let L′ be the set of
normal forms of instances of T under the exhaustive application of the set R.
L′ is not context-free.

If t is derived from T , then t was generated by applying the second production
rule m times (m ≥ 0) and then the first production rule once. It can be easily
proved that t has 3m + 2 occurrences of the symbol f and m + 1 occurrences of
each of symbols a, b and c. Also, all occurrences of the symbols a precede all
occurrences of symbols b and c.

The exhaustive application of r1 transforms t into t′, while t′ is in left-
associative normal form (while all occurrences of the symbols a still precede all
occurrences of the symbols b and c). So, the term t′ is of the form:

f(f(f(. . . (f
︸ ︷︷ ︸

3m+2

(a, a), a), . . . , a)
︸ ︷︷ ︸

m+1

, c), b), c), b), . . . , c), b)
︸ ︷︷ ︸

2m+2

The exhaustive application of r2 “moves” all occurrences of the symbol b

leftwards, “through” occurrences of the symbol c and the term t̂ is of the form:

f(f(f(. . . (f
︸ ︷︷ ︸

3m+2

(a, a), a), . . . , a)
︸ ︷︷ ︸

m+1

, b), b), . . .), b
︸ ︷︷ ︸

m+1

), c), c) . . . , c
︸ ︷︷ ︸

m+1

)

However, the set of such terms is not context-free (which can be easily proved
by the pumping lemma for context-free languages [7]).

The above example shows that given a bnf and a terminating set of rewrite
rules, the resulting (normalised) language might not be definable by a bnf.

34

Hence, since the output is not always definable by a bnf, there is no algorithm
which always construct the resulting bnf.

Even if there is an algorithm that (given a bnf and a terminating set of
rewrite rules) constructs an output bnf whenever it is possible, it would still
not ensure further automation of our programme. Indeed, even if we have such
an algorithm it might still not be of operational use. For instance, if want to
synthesize a decision procedure, we would generate a sequence of bnfs looking
for a trivial one (consisting of only > and ⊥) and, so, we would need to check
whether two bnfs give the same language, but that problem is undecidable in
general. Therefore, it is likely that we cannot have a complete procedure for
synthesizing decision procedures. On the other hand, extensions of our system
along the discussed lines, might improve our current heuristic solutions and
hence are the subject of our future research.

As said above, there is no system that can always produce the output bnf

(since at some situations there is no one). So, the proposed system cannot
be extended by some new additional method generators in order to become
complete. Of course, the realm of the approach extends as the number of method
generators extends. The current set of method generators defines the current
realm of the proposed system. The system is heuristic, so it is difficult to make
a formal characterisation of its realm. It is likely and expected that it can
synthesize procedures that are based on rewriting and that consist of methods
of the available kinds.

In synthesizing decision procedures, the approach does not distinguish if the
theory is a combination of some simpler theories or not. Thus, the problem
of combining decision procedures (for combination of decidable theories) is not
addressed: if there are synthesized decision procedures for component theories,
these cannot be combined. A decision procedure for a combination theory can
be synthesized only if it as a whole can be described in terms of normalisation
methods.

12 Related Work

Our approach is based on ideas from [5] and apart from that strong link, as we
are aware of, it can be considered basically original.

The work presented is related to Knuth-Bendix completion procedure [12]
and its variants in a sense that it performs automatic construction of decision
procedures. However, there are significant differences. While the completion
procedure produces a confluent and terminating set of rewrite rules, and hence
a way how to reach a normal form, it does not give a description of the whole
of the normal forms. In contrast, our system does not necessarily produce
a decision procedure (or a normalisation procedure) whenever the completion
procedure does, but when it produces a decision procedure, it also provides
the finite description of the output (normalised) language (something that the
completion procedure does not give). In addition, the completion procedure
produces procedures that are based on exhaustive applications of rewrite rules,

35

while our system produces procedures that are based successive rule sets and,
can generate a procedure for conjunctive normal form, which cannot be done
by a single rule set. Also, a procedure divided into a number of steps is more
easy understandable to a human then a single step procedure. We believe that
it would be worthwhile to combine our work with the Knuth-Bendix completion
procedure in the following way: the completion procedure can be used to find
a confluent and terminating rule set and then use adeptus to describe the
normal form it produces; on that basis one can build methods with before and
after bnfs as the preconditions and post-conditions of a new method describing
the rewrite rule set.

As it addresses the automatic construction of decision procedures our work
is also related to work presented in [1]. That work is aimed at deriving decision
procedures using superposition-based inference system for clausal equational
logic. The approach is an alternative for congruence closure algorithm and for
the Knuth-Bendix completion procedure. It can handle not only pure equality,
but also some other axiomatic equational theories such as theories of lists, arrays
and extensional arrays.

Our work is related to [10] which performs automatic learning of proof
methods. The system LearnΩmatic described in [10] learns proof methods
(e.g. decision procedures) from proof traces obtained by brute force application
of available primitive methods. LearnΩmatic can help in building efficient
implementation of proof procedures, however does not give simple opportuni-
ties for proving termination or completeness of learnt methods. On the other
hand, within the system presented in this paper, the correctness of synthesized
procedures is obtained automatically because they are composed only of the
application of sound rules.

Automatic generation of decision procedures (especially for user-defined the-
ories) can be very fruitful for using decision procedures in theorem proving. For
instance, we believe that the system presented in this paper fit nicely as an
additional module to the system presented in [11].

13 Future Work

For future work we are planning the following lines of research:

• we will be looking for other suitable domains for our techniques (for in-
stance, we will look at other quantifier elimination procedures and at au-
tomation of constructing solvers required in Shostak’s schemes for using
decision procedures [15, 14]);

• we will try to further automate our system (along the lines discussed in
§11);

• we will try to extend the set of our method generators and search engines
and will try to further improve their efficiency;

36

• we will implement mechanisms which generate not only necessary meth-
ods, but also the corresponding tactics;

• we will try to automate the process of proving completeness (i.e., whether
conditions in the rewrite rules used cover all possible cases); we will try to
do it whenever possible by using the “self-reflection” principle mentioned
in §9.

• we will apply the proposed approach to other problems (e.g., cut-elimination
in sequent calculus);

• we will combine our system with Knuth-Bendix completion procedure (as
discussed in §12).

• the realm of tactics is the theory object level. Methods are meta-level
representation of tactics. Their object level is a meta-level of the theory
we deal with. Method generators are meta-level representation of methods.
They also have preconditions, postconditions, and transformations (while
one of the side-effects is a generated method). They can be seen as meta-
methods. Their object level is a meta-meta-level of the theory we deal
with. Our search engine works with method generators and its object
level is the method generators level, or a meta-meta-meta-level of the
theory we deal with. We will try to automatically generate some method
generators (similarly as methods). Our goal would be to consider all these
layers in a uniform way.

14 Conclusions

In this paper we presented a system (adeptus) for synthesising decision proce-
dures. It is based on ideas from [5].

adeptus consists of several method generators and mechanisms for searching
over them and combining them. We have implemented the system and used it for
generating decision procedures for ground arithmetic and for linear arithmetic.
These procedures ensure correct implementation which is not quite easy for a
human programmer to achieve (as these procedures consist of dozens of steps).
We believe that our approach can be used in other domains as well and can lead
to automation of some routine steps in different types of programming tasks.
Moreover, the presented approach is such that it provides a framework for easy
proving of termination, soundness and completeness of generated procedures.
Also, the approach can give a deeper insight into the nature of some decision
procedures.

References

[1] Armando, A., S. Ranise, and M. Rusinowitch: 2001, ‘Uniform Derivation
of Decision Procedures by Superposition’. In: Computer Science Logic,

37

15th International Workshop, CSL 2001. 10th Annual Conference of the
EACSL, Paris, France, September 10-13, 2001, Proceedings, Vol. 2142 of
LNCS. pp. 513–527.

[2] Boyer, R. S. and J. S. Moore: 1988, ‘Integrating Decision Procedures into
Heuristic Theorem Provers: A Case Study of Linear Arithmetic’. In: J. E.
Hayes, J. Richards, and D. Michie (eds.): Machine Intelligence 11. pp.
83–124.

[3] Bundy, A.: 1988, ‘The Use of Explicit Plans to Guide Inductive Proofs’. In:
R. Lusk and R. Overbeek (eds.): 9th Conference on Automated Deduction.
pp. 111–120. Longer version available from Edinburgh as DAI Research
Paper No. 349.

[4] Bundy, A.: 1991a, ‘A Science of Reasoning’. In: J.-L. Lassez and G. Plotkin
(eds.): Computational Logic: Essays in Honor of Alan Robinson. pp. 178–
198. Also available from Edinburgh as DAI Research Paper 445.

[5] Bundy, A.: 1991b, ‘The Use of Proof Plans for Normalization’. In: R. S.
Boyer (ed.): Essays in Honor of Woody Bledsoe. pp. 149–166. Also available
from Edinburgh as DAI Research Paper No. 513.

[6] Cooper, D. C.: 1972, ‘Theorem Proving in Arithmetic Without Multipli-
cation’. In: B. Meltzer and D. Michie (eds.): Machine Intelligence 7. pp.
91–99.

[7] Davis, M., R. Sigal, and E. Weyuker: 1994, Computability, Complexity,
and Languages (Fundamentals of Theoretical Computer Science). Morgan
Kaufmann/Academic Press.

[8] Gentzen, G.: 1935, ‘Untersuchungen über das logische Schliessen, I, II’.
Mathematische Zeitschrift 39, 176–210, 405–431. English translation in
”The Collected Papers of Gerhard Gentzen”, North-Holland Publ.Co, 1969.

[9] Hodes, L.: 1971, ‘Solving Problems by Formula Manipulation in Logic
and Linear Inequalities’. In: Proceedings of the 2nd International Joint
Conference on Artificial Intelligence. Imperial College, London, England.

[10] Jamnik, M., M. Kerber, M. Pollet, and C. Benzmuller: 2002, ‘Automatic
Learning of Proof Methods in Proof Planning’. Submitted to Journal of Ar-
tificial Intelligence. Also available as Technical Report CSRP-02-5, School
of Computer Science, University of Birmingham.

[11] Janičić, P. and A. Bundy: 2002, ‘A General Setting for the Flexible Com-
bining and Augmenting Decision Procedures’. Journal of Automated Rea-
soning 28(3), 257–305.

[12] Knuth, D. E. and P. B. Bendix: 1970, ‘Simple word problems in universal
algebra’. In: J. Leech (ed.): Computational problems in abstract algebra.
Pergamon Press, pp. 263–297.

38

[13] Lassez, J.-L. and M. Maher: 1992, ‘On Fourier’s algorithm for linear arith-
metic constraints’. Journal of Automated Reasoning 9, 373–379.

[14] Shostak, R. E.: 1979, ‘A practical decision procedure for arithmetic with
function symbols’. JACM 26(2), 351–360.

[15] Shostak, R. E.: 1984, ‘Deciding combinations of theories’. Journal of the
ACM 31(1), 1–12. Also: Proceedings of the 6th International Conference on
Automated Deduction, volume 138 of Lecture Notes in Computer Science,
pp. 209–222. Springer-Verlag, June 1982.

[16] Socher-Ambosius, R.: 1991, ‘Boolean algebra admits no convergent rewrit-
ing system’. In: Proceedings of the 4th International Conference on rewrit-
ing techniques and applications, Vol. 488 of LNCS.

A Appendix: List of Rewrite Rules

rewrite_rule(la, ’rm_univ’, (V:Sort##F), ~(V:Sort\\(~F)),

[quantifier_free(F)], two_way).

rewrite_rule(la, ’rm_redundant’, (V:_Sort\\F), F,

[not(occurs(V,F))], two_way).

rewrite_rule(la, ’rm_impl’, (F1=>F2), (~F1\F2), [], two_way).

rewrite_rule(la, ’rm_equiv’, (F1<=>F2), (F1=>F2)#(F2=>F1), [], two_way).

rewrite_rule(la, ’rm_gr’, (T1>T2), (T2<T1), [], two_way).

rewrite_rule(la, ’rm_leq’, leq(T1,T2), (T1<T2)\(T1=T2), [], two_way).

rewrite_rule(la, ’rm_qeq’, geq(T1,T2), (T2<T1)\(T1=T2), [], two_way).

rewrite_rule(la, ’rm_neq’, neq(T1,T2), (T1<T2)\(T2<T1), [], two_way).

rewrite_rule(la, ’rm_neg_eq’, ~(T1=T2), (T1<T2)\(T2<T1), [], two_way).

rewrite_rule(la, ’rm_neg_less’, ~(T1<T2), (T2<T1)\(T1=T2), [], two_way).

rewrite_rule(la, ’rm_top’, ~(true), false, [], two_way).

rewrite_rule(la, ’rm_bottom’, ~(false), true, [], two_way).

rewrite_rule(la, ’rm_minus’, -T, (-1)*T, [], two_way).

rewrite_rule(la, ’rm_eq1’, C1=C2, true,

[number(C1),number(C2),(C1=C2)], two_way).

rewrite_rule(la, ’rm_eq2’, C1=C2, false,

[number(C1),number(C2),not(C1=C2)], two_way).

rewrite_rule(la, ’rm_ls1’, C1<C2, true,

[number(C1),number(C2),(C1<C2)], two_way).

rewrite_rule(la, ’rm_ls2’, C1<C2, false,

[number(C1),number(C2),not(C1<C2)], two_way).

rewrite_rule(la, ’rm_mult’, C1*C2, C3,

[number(C1),number(C2),(C3 is C1*C2)], two_way).

rewrite_rule(la, ’st_neg_univ’, (~(V##F)), (V\\(~F)),

[], two_way).

rewrite_rule(la, ’st_neg_exi’, (~(V\\F)), (V##(~F)),

[], two_way).

rewrite_rule(la, ’st_conj_univ1’, (F1#(V##F2)), (V##(F1#F2)),

[], two_way).

rewrite_rule(la, ’st_conj_univ2’, ((V##F2)#F1), (V##(F2#F1)),

[], two_way).

rewrite_rule(la, ’st_conj_exi1’, (F1#(V\\F2)), (V\\(F1#F2)),

[], two_way).

39

rewrite_rule(la, ’st_conj_exi2’, ((V\\F2)#F1), (V\\(F2#F1)),

[], two_way).

rewrite_rule(la, ’st_disj_univ1’, (F1\(V##F2)), (V##(F1\F2)),

[], two_way).

rewrite_rule(la, ’st_disj_univ2’, ((V##F2)\F1), (V##(F2\F1)),

[], two_way).

rewrite_rule(la, ’st_disj_exi1’, (F1\(V\\F2)), (V\\(F1\F2)),

[], two_way).

rewrite_rule(la, ’st_disj_exi2’, ((V\\F2)\F1), (V\\(F2\F1)),

[], two_way).

rewrite_rule(la, ’st_neg_conj’, (~(F1#F2)), ((~F1)\ (~F2)),

[], two_way).

rewrite_rule(la, ’st_neg_disj’, (~(F1\ F2)), ((~F1)# (~F2)),

[], two_way).

rewrite_rule(la, ’st_conj_disj1’, (F1#(F2\F3)), (F1#F2)\ (F1#F3),

[], two_way).

rewrite_rule(la, ’st_conj_disj2’, ((F2\F3)#F1), (F2#F1)\ (F3#F1),

[], two_way).

rewrite_rule(la, ’st_mult_plus1’, (T1*(T2+T3)), (T1*T2)+(T1*T3),

[], two_way).

rewrite_rule(la, ’st_mult_plus2’, ((T2+T3)*T1), (T2*T1)+(T3*T1),

[], two_way).

rewrite_rule(la, ’thin_neg’, (~(~(F))), F, [], two_way).

rewrite_rule(la, ’left_assoc_conj’, (F1#(F2#F3)), ((F1#F2)#F3),

[], two_way).

rewrite_rule(la, ’left_assoc_disj’, (F1\(F2\F3)), ((F1\F2)\F3),

[], two_way).

rewrite_rule(la, ’left_assoc_plus’, (T1+(T2+T3)), ((T1+T2)+T3),

[], two_way).

rewrite_rule(la, ’left_assoc_mult’, (T1*(T2*T3)), ((T1*T2)*T3),

[], two_way).

rewrite_rule(la, ’reduce_plus’, (T1+T2), T3,

[number(T1),number(T2),T3 is T1+T2], two_way).

rewrite_rule(la, ’absorbe_mult’, (C1*(C2*T)), C3*T,

[number(C1),number(C2),C3 is C1*C2], two_way).

rewrite_rule(la, ’reorder_plus1’, (C*V+T1),(T1+C*V),

[variable(V),number(T1)], two_way).

rewrite_rule(la, ’reorder_plus2’, (V+T1),(T1+V),

[variable(V),number(T1)], two_way).

rewrite_rule(la, ’reorder_plus3’, ((T+(C*V))+T1), ((T+T1)+(C*V)),

[variable(V),number(T1)], two_way).

rewrite_rule(la, ’reorder_plus4’, ((T+(V))+T1), ((T+T1)+(V)),

[variable(V),number(T1)], two_way).

rewrite_rule(la, ’reorder_plus5’, (x0+V),(V+x0),

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus6’, (x0+C*V), (C*V+x0),

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus7’, (C*x0+V),(V+C*x0),

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus8’, (C0*x0+C*V), (C*V+C0*x0),

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus9’, (T+x0)+V, (T+V)+x0,

40

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus10’, (T+x0)+C*V, (T+C*V)+x0,

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus11’, (T+C*x0)+V, (T+V)+C*x0,

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus12’, (T+C0*x0)+C*V, (T+C*V)+C0*x0,

[variable(V),not(V=x0)], two_way).

rewrite_rule(la, ’reorder_plus13’, (T+x0)+x0, T+C*x0,

[number(C), C is 2], two_way).

rewrite_rule(la, ’reorder_plus14’, (T+x0)+C*x0, T+C1*x0,

[number(C1),C1 is C+1], two_way).

rewrite_rule(la, ’reorder_plus15’, (T+C*x0)+x0, T+C1*x0,

[number(C1),C1 is C+1], two_way).

rewrite_rule(la, ’reorder_plus16’, (T+C0*x0)+C1*x0, T+C*x0,

[number(C1),C is C0+C1], two_way).

rewrite_rule(la, ’reduce_bool1’, (F1#true), (F1), [], two_way).

rewrite_rule(la, ’reduce_bool2’, (_F1\true), (true), [], two_way).

rewrite_rule(la, ’reduce_bool3’, (_F#false), false, [], two_way).

rewrite_rule(la, ’reduce_bool4’, (F1\false), (F1), [], two_way).

rewrite_rule(la, ’collect1’, x0+x0, C*x0,

[C is 2], two_way).

rewrite_rule(la, ’collect2’, x0+C*x0, C1*x0,

[number(C1),C1 is C+1], two_way).

rewrite_rule(la, ’collect3’, C*x0+x0, C1*x0,

[number(C1),C1 is C+1], two_way).

rewrite_rule(la, ’collect4’, C0*x0+C1*x0, C*x0,

[number(C1),C is C0+C1], two_way).

rewrite_rule(la, ’one_side1’, (T1=T2), (T1+(-1)*T2=0),

[not(T2=0)], two_way).

rewrite_rule(la, ’one_side2’, (T1<T2), (T1+(-1)*T2<0),

[not(T2=0)], two_way).

rewrite_rule(la, ’isolate1’, T+C*x0=0, C*x0= (-(T)),

[number(C)], two_way).

rewrite_rule(la, ’isolate2’, T+x0=0, x0=(-(T)),

[], two_way).

rewrite_rule(la, ’isolate3’, T+C*x0<0, C*x0<(-(T)),

[number(C)], two_way).

rewrite_rule(la, ’isolate4’, T+x0<0, x0<(-(T)),

[], two_way).

B Appendix: Generated Procedure for Linear

Arithmetic

1 remove <=>; Target class: f;

Rules:[[f, f<=>f, rm_equiv]];

Input size: 2233 Output size : 2004 (*)

2 remove =>; Target class: f;

Rules:[[f, f=>f, rm_impl]];

Input size: 2004 Output size : 1803 (*)

3 remove leq; Target class: f;

Rules:[[f, leq(t, t), rm_leq]];

41

Input size: 1803 Output size : 1782 (*)

4 remove geq; Target class: f;

Rules:[[f, geq(t, t), rm_qeq]];

Input size: 1782 Output size : 1761 (*)

5 remove neq; Target class: f;

Rules:[[f, neq(t, t), rm_neq]];

Input size: 1761 Output size : 1740 (*)

6 remove >; Target class: f;

Rules:[[f, t>t, rm_gr]];

Input size: 1740 Output size : 1719 (*)

7 remove -; Target class: t;

Rules:[[t, -t, rm_minus]];

Input size: 1719 Output size : 1618 (*)

8 remove -; Target class: re;

Rules:[[re, -re, rm_minus]];

Input size: 1618 Output size : 1517 (*)

9 stratify [##, \\]; Target class: f;

Rules:[[f, f#var:rational##f, st_conj_univ1],

[f, f#var:rational\\f, st_conj_exi1],

[f, var:rational##f#f, st_conj_univ2],

[f, var:rational\\f#f, st_conj_exi2],

[f, f\var:rational##f, st_disj_univ1],

[f, f\var:rational\\f, st_disj_exi1],

[f, var:rational##f\f, st_disj_univ2],

[f, var:rational\\f\f, st_disj_exi2],

[f, ~var:rational##f, st_neg_univ],

[f, ~var:rational\\f, st_neg_exi]];

Input size: 1517 Output size : 1527

--

10 adjust_innermost x0; Target class: f;

Rules:[[f, x0:rational##f1, rm_univ]];

Input size: 1527 Output size : 1547

11 stratify [#, \]; Target class: f1;

Rules:[[f1, ~(f1#f1), st_neg_conj], [f1, ~(f1\f1), st_neg_disj]];

Input size: 1553 Output size : 1557

12 thin ~; Target class: f11;

Rules:[[f11, ~(~f11), thin_neg]];

Input size: 1557 Output size : 1494 (*)

13 remove ~; Target class: f1;

Rules:[[f1, ~false, rm_bottom], [f1, ~true, rm_top],

[f1, ~t<t, rm_neg_less], [f1, ~t=t, rm_neg_eq]];

Input size: 1504 Output size : 1446 (*)

14 one_side [0, [<, >, leq, neq, geq, =]]; Target class: f1;

Rules:[[f1, t<t, one_side2], [f1, t=t, one_side1]];

Input size: 1446 Output size : 1428 (*)

15 stratify [\]; Target class: f1;

Rules:[[f1, f1#f1\f1, st_conj_disj1],

[f1, (f1\f1)#f1, st_conj_disj2]];

Input size: 1428 Output size : 1438

16 stratify [+]; Target class: t;

Rules:[[t, re*(t+t), st_mult_plus1]];

Input size: 1438 Output size : 1448

17 stratify [+]; Target class: re;

Rules:[[re, re*(re+re), st_mult_plus1],

[re, (re+re)*re, st_mult_plus2]];

Input size: 1448 Output size : 1458

18 left_assoc \; Target class: f1;

42

Rules:[[f1, f1\f1, left_assoc_disj]];

Input size: 1458 Output size : 1368 (*)

19 left_assoc #; Target class: f11;

Rules:[[f11, f11#f11, left_assoc_conj]];

Input size: 1368 Output size : 1597

20 stratify [<, =]; Target class: f11;

Rules:[[f11, (f11#t<0)#false, reduce_bool3],

[f11, (f11#t<0)#true, reduce_bool1],

[f11, (f11#t=0)#false, reduce_bool3],

[f11, (f11#t=0)#true, reduce_bool1],

[f11, t<0#false, reduce_bool3],

[f11, t<0#true, reduce_bool1],

[f11, t=0#false, reduce_bool3],

[f11, t=0#true, reduce_bool1]];

Input size: 1597 Output size : 1607

21 remove #; Target class: f111;

Rules:[[f111, f111#false, reduce_bool3],

[f111, f111#true, reduce_bool1]];

Input size: 1607 Output size : 1393

22 left_assoc +; Target class: re;

Rules:[[re, re+re, left_assoc_plus]];

Input size: 1403 Output size : 1303 (*)

23 left_assoc +; Target class: t;

Rules:[[t, t+t, left_assoc_plus]];

Input size: 1303 Output size : 1213 (*)

24 left_assoc *; Target class: re1;

Rules:[[re1, re1*re1, left_assoc_mult]];

Input size: 1213 Output size : 1123 (*)

25 absorbe *; Target class: re1;

Rules:[[re1, rc*rc, rm_mult]];

Input size: 1123 Output size : 1002 (*)

26 absorbe +; Target class: re;

Rules:[[re, rc+rc, reduce_plus]];

Input size: 1012 Output size : 881 (*)

27 absorbe *; Target class: t1;

Rules:[[t1, rc*(rc*t1), absorbe_mult], [t1, rc*rc, rm_mult]];

Input size: 891 Output size : 1241

28 stratify [x0]; Target class: t;

Rules:[[t, x0+rc, reorder_plus2],

[t, x0+var, reorder_plus5],

[t, x0+rc*var, reorder_plus6],

[t, rc*x0+rc, reorder_plus1],

[t, rc*x0+var, reorder_plus7],

[t, rc*x0+rc*var, reorder_plus8],

[t, t+x0+rc, reorder_plus4],

[t, t+x0+var, reorder_plus9],

[t, t+x0+rc*var, reorder_plus10],

[t, t+rc*x0+rc, reorder_plus3],

[t, t+rc*x0+var, reorder_plus11],

[t, t+rc*x0+rc*var, reorder_plus12]];

Input size: 803 Output size : 1251

29 absorbe +; Target class: t;

Rules:[[t, t+x0+x0, reorder_plus13],

[t, t+rc*x0+x0, reorder_plus15],

[t, x0+x0, collect1],

[t, rc*x0+x0, collect3],

[t, t+x0+rc*x0, reorder_plus14],

43

[t, t+rc*x0+rc*x0, reorder_plus16],

[t, x0+rc*x0, collect2],

[t, rc*x0+rc*x0, collect4]];

Input size: 1251 Output size : 2045

30 isolate [[x0, rc*x0], [<, >, leq, neq, geq, =]]; Target class: f11;

Rules:[[f11, f11#t1+x0<0, isolate4],

[f11, f11#t1+rc*x0<0, isolate3],

[f11, f11#t1+x0=0, isolate2],

[f11, f11#t1+rc*x0=0, isolate1],

[f11, t1+x0<0, isolate4],

[f11, t1+rc*x0<0, isolate3],

[f11, t1+x0=0, isolate2],

[f11, t1+rc*x0=0, isolate1]];

Input size: 1071 Output size : 2037

31 eliminate [[x0, rc*x0], [<, >, leq, neq, geq, =]]; Target class: f;

Rules:[[f, x0:_G18107_G18104, rm_redundant]];

Input size: 2037 Output size : 1127

32 stratify [#, \]; Target class: f1;

Rules:[[f1, ~(f1#f1), st_neg_conj], [f1, ~(f1\f1), st_neg_disj]];

Input size: 1312 Output size : 1312 (*)

33 thin ~; Target class: f11;

Rules:[[f11, ~(~f11), thin_neg]];

Input size: 1312 Output size : 1249 (*)

34 remove ~; Target class: f1;

Rules:[[f1, ~false, rm_bottom], [f1, ~true, rm_top],

[f1, ~t<t, rm_neg_less], [f1, ~t=t, rm_neg_eq]];

Input size: 1259 Output size : 1201 (*)

35 stratify [\]; Target class: f1;

Rules:[[f1, f1#f1\f1, st_conj_disj1],

[f1, (f1\f1)#f1, st_conj_disj2]];

Input size: 1201 Output size : 1211

36 stratify [+]; Target class: t;

Rules:[[t, re*(t+t), st_mult_plus1]];

Input size: 1211 Output size : 1221

37 left_assoc \; Target class: f1;

Rules:[[f1, f1\f1, left_assoc_disj]];

Input size: 1221 Output size : 1131 (*)

38 stratify [+]; Target class: re;

Rules:[[re, re*(re+re), st_mult_plus1],

[re, (re+re)*re, st_mult_plus2]];

Input size: 1131 Output size : 1141

39 left_assoc +; Target class: re;

Rules:[[re, re+re, left_assoc_plus]];

Input size: 1141 Output size : 1051 (*)

40 left_assoc +; Target class: t;

Rules:[[t, t+t, left_assoc_plus]];

Input size: 1051 Output size : 961 (*)

41 left_assoc *; Target class: re1;

Rules:[[re1, re1*re1, left_assoc_mult]];

Input size: 961 Output size : 871 (*)

42 absorbe *; Target class: re1;

Rules:[[re1, rc*rc, rm_mult]];

Input size: 871 Output size : 750 (*)

43 absorbe +; Target class: re;

Rules:[[re, rc+rc, reduce_plus]];

Input size: 760 Output size : 629 (*)

44

44 absorbe *; Target class: t1;

Rules:[[t1, rc*rc, rm_mult]];

Input size: 639 Output size : 508 (*)

45 absorbe +; Target class: t;

Rules:[[t, rc+rc, reduce_plus]];

Input size: 518 Output size : 387 (*)

46 remove <; Target class: f11;

Rules:[[f11, rc<rc, rm_ls1], [f11, rc<rc, rm_ls2]];

Input size: 397 Output size : 366 (*)

47 remove =; Target class: f11;

Rules:[[f11, rc=rc, rm_eq1], [f11, rc=rc, rm_eq2]];

Input size: 366 Output size : 345 (*)

48 left_assoc #; Target class: f11;

Rules:[[f11, f11#f11, left_assoc_conj]];

Input size: 345 Output size : 348

49 remove #; Target class: f11;

Rules:[[f11, f11#false, reduce_bool3],

[f11, f11#true, reduce_bool1]];

Input size: 348 Output size : 227 (*)

50 remove \; Target class: f1;

Rules:[[f1, f1\false, reduce_bool4],

[f1, f1\true, reduce_bool2]];

Input size: 144 Output size : 6 (*)

51 remove ~; Target class: f;

Rules:[[f, ~false, rm_bottom], [f, ~true, rm_top]];

Input size: 23 Output size : 2

C Appendix: Example of a Linear Arithmetic

Solved Formula

1 x:rational##(x>0)

2 x:rational##(x>0)

3 x:rational##(x>0)

4 x:rational##(x>0)

5 x:rational##(x>0)

6 x:rational##(0<x)

7 x:rational##(0<x)

8 x:rational##(0<x)

9 x:rational##(0<x)

10 ~x0:rational\\(~0<x0)

11 ~x0:rational\\(~0<x0)

12 ~x0:rational\\(~0<x0)

13 ~x0:rational\\(x0<0\0=x0)

14 ~x0:rational\\(x0<0\0+-1*x0=0)

15 ~x0:rational\\(x0<0\0+-1*x0=0)

16 ~x0:rational\\(x0<0\0+-1*x0=0)

17 ~x0:rational\\(x0<0\0+-1*x0=0)

18 ~x0:rational\\(x0<0\0+-1*x0=0)

19 ~x0:rational\\(x0<0\0+-1*x0=0)

20 ~x0:rational\\(x0<0\0+-1*x0=0)

21 ~x0:rational\\(x0<0\0+-1*x0=0)

22 ~x0:rational\\(x0<0\0+-1*x0=0)

23 ~x0:rational\\(x0<0\0+-1*x0=0)

24 ~x0:rational\\(x0<0\0+-1*x0=0)

25 ~x0:rational\\(x0<0\0+-1*x0=0)

45

26 ~x0:rational\\(x0<0\0+-1*x0=0)

27 ~x0:rational\\(x0<0\0+-1*x0=0)

28 ~x0:rational\\(x0<0\0+-1*x0=0)

29 ~x0:rational\\(x0<0\0+-1*x0=0)

30 ~x0:rational\\(x0<0\-1*x0= -0)

31 ~(0*1<1*1\-1*0=-1*0)

32 ~0*1<1*1# ~-1*0=-1*0

33 ~0*1<1*1# ~-1*0=-1*0

34 (1*1<0*1\0*1=1*1)#-1*0<-1*0\-1*0<-1*0

35 ((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

(1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

36 ((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

(1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

37 (((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

38 (((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

39 (((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

40 (((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

41 (((1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0)\

1*1<0*1#-1*0<-1*0)\0*1=1*1#-1*0<-1*0

42 (((1<0#0<0)\0=1#0<0)\1<0#0<0)\0=1#0<0

43 (((1<0#0<0)\0=1#0<0)\1<0#0<0)\0=1#0<0

44 (((1<0#0<0)\0=1#0<0)\1<0#0<0)\0=1#0<0

45 (((1<0#0<0)\0=1#0<0)\1<0#0<0)\0=1#0<0

46 (((false#false)\0=1#false)\false#false)\0=1#false

47 (((false#false)\false#false)\false#false)\false#false

48 (((false#false)\false#false)\false#false)\false#false

49 ((false\false)\false)\false

50 false

51 false

46

