
Instance-Based Selection of Policies for SAT
Solvers?

Mladen Nikolić, Filip Marić, Predrag Janičić

Faculty of Mathematics, University of Belgrade,
Belgrade, Studentski Trg 16, Serbia

{nikolic, filip, janicic}@matf.bg.ac.rs

Abstract. Execution of most of the modern DPLL-based SAT solvers is
guided by a number of heuristics. Decisions made during the search pro-
cess are usually driven by some fixed heuristic policies. Despite the out-
standing progress in SAT solving in recent years, there is still an appeal-
ing lack of techniques for selecting policies appropriate for solving specific
input formulae. In this paper we present a methodology for instance-
based selection of solver’s policies that uses a data-mining classification
technique. The methodology also relies on analysis of relationships be-
tween formulae, their families, and their suitable solving strategies. The
evaluation results are very good, demonstrate practical usability of the
methodology, and encourage further efforts in this direction.

1 Introduction

The propositional satisfiability problem (SAT) is one of the fundamental prob-
lems in computer science. It is the problem of deciding if there is a truth assign-
ment under which a given propositional formula (in conjunctive normal form)
evaluates to true. SAT was the first problem proved to be NP-complete [Coo71]
and it still has a central position in the field of computational complexity. SAT
problem is also very important in many practical domains such as electronic de-
sign automation, software and hardware verification, artificial intelligence, and
operations research. Thanks to recent advances in propositional solving technol-
ogy, SAT solvers (procedures that solve the SAT problem) are becoming a tool
for attacking more and more practical problems.

A number of SAT solvers have been developed. The majority of state-of-the-
art complete SAT solvers are based on the branch and backtrack algorithm called
Davis-Putnam-Logemann-Loveland or the DPLL algorithm [DP60,DLL62]. Spec-
tacular improvements in the performance of DPLL-based SAT solvers achieved
in the last few years are due to (i) several conceptual enhancements on the orig-
inal DPLL procedure, aimed at reducing the amount of explored search space
(e.g., backjumping, conflict-driven lemma learning, restarts), (ii) better imple-
mentation techniques (e.g., two-watched literals scheme for unit propagation),
and (iii) smart heuristic components (which we focus on in this work). These

? This work was partially supported by Serbian Ministry of Science grant 144030.



advances make possible to decide the satisfiability of industrial SAT problems
with tens of thousands of variables and millions of clauses.

Complex policies, heuristics that guide the search process, represent impor-
tant parts of modern SAT solvers and are crucial for solver’s efficiency. These
include policies for literal selection, for determining the clause database size,
for choosing restart points, etc. Specific policies are usually parameterized by
a number of numerical and categorial parameters. Single policy with different
parameter values can be treated as different policies. SAT solving process is
completely determined (up to randomized choices) only when all its heuristic
policies are set. Selected combinations of policies specify the solving strategy (or
simply strategy).

Typically, every SAT solver uses a predetermined, hard-coded strategy and
applies it on all its input formulae. However, in recent times, SAT solvers tend
to implement multiple policies and the question arises as to how to choose a
strategy that would give good performance for a specific SAT instance. Address-
ing this question is of crucial importance because the solving time for the same
input formula can vary for several orders of magnitude depending on the solving
strategy used. The problem of adapting a SAT solver to the input formula has
been addressed for the first time only recently. Our approach significantly differs
from the only existing related approach we are aware of (as discussed in Sect. 5).

Propositional formulae can be clustered in families of formulae by their origin
— industrial problems (e.g., FPGA routing), manually crafted problems (e.g.,
graph coloring, Hanoi towers), or random generated problems (e.g., k-SAT). It
is interesting to explore the behaviour of different policies and solving strategies
on families of formulae. The important question is whether one strategy shows
the same or similar behaviour on similar formulae. If this is the case, and if one
can automatically guess a family to which a given formula belongs, then this
could be used for selecting an appropriate strategy for this particular formula.
To implement this approach, one needs (i) a technique for classifying formulae
based only on their syntax; (ii) information about behaviour of different policies
on various families of formulae.

The main message of this work is that intelligent selecting of solving policies,
based on the syntax of the input formula, can significantly improve efficiency of a
SAT solver. The proposed methodology will not lead to optimal performance on
each input formula, but the solving performance will be significantly improved
in average on multiple input formulae. Here, by improving efficiency of a SAT
solver we mean increasing the number of formulae solvable within some time
limit and decreasing the solving time.

The proposed methodology relies on several hypotheses that will be investi-
gated in the rest of the paper:

(H1) Formulae of the same family (i.e., of similar origin) share some syntactical
properties that can be used for automated formula classification;

(H2) For each family of formulae there is only a small number of solving strate-
gies that are appropriate — that show better performance on formulae be-
longing to that family then all other available strategies.



(H3) For formulae that are syntactically similar, the best strategies are also (in
some sense) similar.
If the above hypotheses hold, then our methodology will be practically appli-

cable. Namely, if the formula is correctly classified then it has a good chance to
be solved by a solving strategy suitable for a family that the formula belongs to.
However, even if the formula is misclassified, it will be solved using a strategy
similar to the optimal one.

The rest of the paper is organized as follows: in Sect. 2, a brief background
information on SAT problem, SAT solvers, and their heuristic components is
given. In Sect. 3, the proposed methodology is described. The experimental re-
sults are given in Sect. 4. In Sect. 5 related work is discussed. In Sect. 6 final
conclusions are drawn and some directions of possible further work are discussed.

2 Background

Most of today’s state-of-the-art solvers are complex variations of the DPLL
procedure. In the rest of the paper, we shall assume that the reader is familiar
with the modern SAT solving techniques. More on these topics can be found, for
example, in [NOT06,KG07,Mar08,GKSS07]. Although modern SAT solvers share
common underlying algorithms and implementation techniques, their operation
is guided by a number of heuristic policies that have to be selected in order to
define solving strategies. The most important heuristic policies determine: (i)
which literals to choose for branching, (ii) when to apply restarting, and (iii)
when to forget some clauses that are learnt during the solving process. In the
rest of this section, policies that were varied in our experiments will be described.
Literal selection policies. During the DPLL backtrack-search, literals used for
branching should be somehow selected. This is the role of literal selection policies.
Most literal selection policies separately select a variable v (by using a variable
selection policy) and only then choose its polarity, i.e., choose if it should be
negated or not (by using a polarity selection policy).

Some variable selection policies are the following1:

VSrandom — This policy randomly chooses a variable among all variables of the
initial formula that are not defined in the current valuation, i.e., assertion
trail.

VSb,d,init
V SIDS — The goal of this policy (introduced in the solver Chaff [MMZ+01])
is to select a variable that was active in recent conflicts. In order to imple-
ment this, an activity score is assigned to each variable. On every conflict,
the scores of the variables that occur in the conflict clause are bumped, i.e.,
increased by a bump factor given by the parameter b. Also, during the con-
flict analysis process, on each resolution step all variables that occur in the
explanation clause are bumped. To stimulate recent conflicts, on each con-
flict all the scores are decayed, i.e., decreased by a decay factor given by the
parameter d.

1 The policy names will be printed in subscripts and their parameters in superscripts.



An important aspect of the vsids variable selection policy is how to assign
initial scores to variables. If the parameter init has the value zero, scores of
all variables are set to zero, hence all variables have the same chance to be
selected. If the parameter init has the value freq, the initial score of each
variable is set to its number of occurrences in the initial formula F0.

VSp
random◦ VSx — This compound policy chooses a random variable with prob-
ability p and otherwise uses a given policy here denoted by VSx.

Some polarity selection policies are the following:

PSpositive — Always selects a non-negated literal.
PSnegative — Always selects a negated literal.
PSp

random — A random selection which chooses a non-negated literal with prob-
ability p.

PSinit
polarity caching — When using this policy (introduced in the solver RSAT
[PD07] as phase caching), a preferred polarity is assigned to each variable
and it is used for polarity selection. Whenever a literal is asserted to the
current assertion trail (either as a decision or as a propagated literal), its
polarity defines the future preferred polarity of its variable. When a literal
is removed from the trail (during backjumping or restarting) its preferred
polarity is not changed. If the parameter init has the value pos, then initial
polarities of all variables are positive, it has the value neg then they are
set to negative, and if it has the value freq, then preferred polarity of each
variable is set to the polarity which is more frequent of the two in the initial
formula.

Restart policies. Restart policies determine when to apply restarting. Most
restart policies are based on conflict counting. On each conflict, the counter is
increased. Restarting is applied whenever the counter reaches a certain threshold
value. When this happens, the counter is reset and a new threshold is selected
according to some specific policy. Some possible restart policies are the following:
Rno restart — Restarting is not applied.
Rc0,q

minisat — The initial threshold value is set to c0 and the threshold values form
a geometric sequence with a quotient q [ES04].

Rm
luby — The threshold values are elements of the Luby series [LSZ93] multiplied

by a positive integer m, while the Luby series is:

ti =
{

2k−1 if i = 2k − 1
ti−2k−1+1 if 2k−1 ≤ i ≤ 2k − 1

Its first few elements for m = 1 are 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, ...
Rc0,q

picosat — In this policy (introduced by the solver PicoSAT [Bie08]), restarts
are controlled by two geometric sequences of threshold values — inner and
outer, both with an initial member c0 and a quotient q. Restarting is ap-
plied when the number of the conflicts reaches the current inner threshold
value, and then the inner threshold value advances to the next element of
the sequence. When the inner threshold exceeds the current outer threshold
value, it is reset to the initial value c0, and the outer threshold advances.



3 Methodology

Our methodology, when applied to a given SAT solver, selects an appropriate
solving strategy (i.e., combination of policies) for each input formula. The pro-
posed methodology can be applied to any DPLL-based SAT solver, provided it
supports multiple policies. In our experiments, the ArgoSAT solver2 was used
since it implements a large number of policies and since its modular architecture
allows easy modification of existing and implementation of new policies [Mar09].

The overall methodology consists of two phases.

Training phase. This phase consists of systematic solving of all formulae from
a representative corpus, by using all candidate solving strategies. This allows
selecting the best solving strategy (the one that solves the most formulae)
for each family of formulae from the corpus. Profiles of all formulae from the
corpus (i.e., their representation suitable for classification) are also computed
in this phase.

Exploitation phase. In this phase, the family of a given formula is guessed and
the strategy that showed the best results on that family during the training
phase is used for its solving.3 After the training, the system implementing the
methodology can be applied both to the formulae from the training corpus
and to some other formulae.

Several issues still need to be addressed, as discussed below.

The choice of candidate solving strategies. In our case candidate strate-
gies are defined as all (60 = 3 · 5 · 4) possible combinations of the given
policies. They are listed in Table 1. Apart from the policies that are sub-
ject to automatic selection, some important policies (e.g., forget and conflict
analysis) are fixed. 4 We do not claim that some other policies could not give
better performance. Some of the considered policies are even expected to be
inferior. However, we are proposing a general methodology that can be used
with any input set of policies.

The choice of corpus of formulae for training and evaluation. In our ex-
periments (both during the training and for testing), the corpus from the
SAT competition in 2002 was used. It consists of a large number of families of
formulae, with many families containing formulae of various difficulty. The
total number of formulae in this corpus is 1964, and we clustered them into
39 families, mostly just by following the directory structure. Since this cor-
pus was systematically solved in the training phase, it can be used both for

2 http://argo.matf.bg.ac.rs/software/
3 We also tested an alternative approach that does not use information on families.

In that approach, k (k ≥ 1) formulae that are most similar to the input formula are
detected. Then, a solving strategy that occurs most frequently among l (l ≥ 1) best
strategies for each detected formula is chosen. This alternative approach will not be
discussed in more details because it gave inferior results.

4 A MiniSAT-style forget policy [ES04] and 1UIP technique [ZMMM01] for conflict
analysis are used.



Variable selection VSrandom, VS
1.0, 1.0/0.95, freq
V SIDS , VS0.05

random◦ VS
1.0, 1.0/0.95, freq
V SIDS

Polarity selection PSpos, PSneg, PS0.5
random, PSneg

polarity caching, PSfreq
polarity caching

Restart policies Rno restart, R100,1.5
minisat, R512

luby, R100,1.5
picosat

Table 1. Overview of policies used in our experiments

testing of hypotheses and for thorough analysis of the proposed methodol-
ogy. For testing of a generalization power of our methodology on a different
corpus, the SAT competition corpus from 2007 was used. Namely, out of 906
formulae in this corpus, only 12 of them also belong to the corpus from 2002.
In addition, the two corpora include significantly different families (although
overlapping exists). Since the SAT2007 corpus was used only for evaluation
of our resulting solving system, we do not consider its partitioning into fam-
ilies.

The choice of relevant features of propositional formulae. In order to
measure the syntactic similarity of propositional formulae (which is nec-
essary for classification), the formulae were represented by using the first
33 features used in [XHHLB08]. These are features that can be calculated
in short time. They include the number of clauses c and variables v in the
input formula, their ratio c

v , fraction of binary, ternary, and Horn clauses,
node degree statistics for variable nodes in variable-clause graph like mean,
variation coefficient, minimum, maximum, and entropy, etc. The vectors of
these features are called the formula profiles or simply profiles.

The choice of methods for classification of propositional formulae. For
classification, the k-nearest neighbour algorithm was used. When given an
unknown instance, this algorithm selects the class that contains the most of
the k instances from the training corpus that are closest to the given one.
A number of distance functions between the profiles were used [TJK06]. For
instance:

d1(P ′,P ′′) =

√∑
i

(P ′
i − P ′′

i )2 d2(P ′,P ′′) =
∑

i

(
P ′

i − P ′′
i√

|P ′
iP ′′

i )|+ 1

)2

d3(P ′,P ′′) =
∑

i

|P ′
i − P ′′

i |√
|P ′

iP ′′
i |+ 1

d4(P ′,P ′′) =
∑

i

(
P ′

i − P ′′
i√

|P ′
iP ′′

i |+ 10

)2

where P ′ and P ′′ are instance profiles.

4 Experiments and Evaluation

Experiments described in this section test the hypotheses that our approach
relies on (given in Sect. 1), and also demonstrate a good overall quality of our
methodology.



Training Phase. During the training phase, the cutoff time for solving one for-
mula by one strategy was set to 600s. It would be interesting to consider higher
cutoff times as well, but this choice was made with regard to available compu-
tational resources. Since shuffling of clauses and variables of a formula can lead
to big differences in its solving time (up to an order of magnitude), the solving
times associated with the formulae were calculated in the following way. For each
formula, the original and one shuffled variant were solved. If both variants of the
formula were solved within the time limit, the arithmetic mean of their solving
times was associated to the formula. If either variant was not solved within the
cutoff time limit, the formula was considered to be unsolved. The SAT solver
was used on all the formulae from the extended corpus, for all 60 strategies.
The total number of calls to the SAT solver was 235680 (= 1964 · 60 · 2). The
experiments were conducted on an IBM Cluster 1350 cluster computer with 32
processors. The total processor time used was around 1010 days.

Along with solving the formulae, their profiles were computed. The average
profile computation time was 0.39s per formula.

4.1 Testing Hypotheses

Hypothesis (H1). The first hypothesis is that formulae from the same family
share syntactical properties that can be used for automated formula classifica-
tion. In the k-nearest neighbours method, values 1, 3, 5, 7 were used for k. The
best results were obtained for k = 1 with the distance function d3

5. The preci-
sion, a ratio between the number of correctly classified formulae and the total
number of formulae classified, was 98.5%. The arithmetic mean of precisions for
individual families6, was 89.4%. To avoid evaluating on the same data that was
used for training, both statistics were estimated using the leave-one-out proce-
dure. This procedure consists of removing formula from the corpus, computing
the relevant statistic on the rest of the corpus, and returning the formula into
the corpus. This is done for all formulae. The obtained values of the statistic
were averaged at the end to give the final estimate of the statistic on given data.

The results of the classification are outstanding (especially keeping in mind
a rather large number of classes — 39) and show that the first hypothesis of the
methodology is sound. Since the average profile computation time for a formula
is 0.39s and the classification time of a known profile is less than 0.01s, this
approach to classification is practically usable for our purposes and may have
applications in other domains too.

Hypothesis (H2). The second hypothesis of our methodology is that there is a
small number of strategies for each family of formulae that show better perfor-
mance on formulae belonging to that family then all other available strategies.
5 Therefore, in all experimental results in the rest of the paper, this distance function

will be assumed.
6 Precision alone is not reliable in cases when some families are much larger than the

others (which is the case with the SAT2002 corpus), so a high precision on large
classes can hide a low precision on small classes.



To check this hypothesis, for each strategy and for each family of formulae a
percentage of formulae for which that strategy was better then any other strat-
egy was calculated. The results are shown in a graphical form in Fig. 1. In the
left part of the figure, darker shades correspond to higher values, and lighter
to lower values. The highest value (i.e., percentage) in the table is 30, and the
lowest value is 0. In the right part of the figure, normalized entropies for families
are shown. For simplicity, the results are shown only for families with at least 10
formulae that were solved by at least one strategy. The figure shows that there
is no family with a dominantly best strategy. However, the presented matrix
is sparse and the average normalized entropy for all families is 0.39 — hence,
for each family there is a rather small set of good strategies and therefore, the
second hypothesis can be considered to be justified.

These results also reveal the quality of some strategies. For instance, 15 empty
columns correspond to strategies with VSrandom variable selection policy, which
suggests a poor performance of this policy.

0 0.5 1

Fig. 1. The left part shows percentages of formulae from a family for which a strategy
is better than any other (columns correspond to strategies and rows correspond to
families). The right part shows normalized entropy values for families.

Hypothesis (H3). The third hypothesis of our methodology is that the best
solving strategies for syntactically similar formulae are also similar. Syntacti-
cal similarity between formulae is already defined by the choice of profiles and
the distance function (d3) from Sect. 3. On the other hand, similarity between
strategies can be defined using the edit distance over strategies:

dc(s1s2s3, t1t2t3) =
3∑

i=1

c(si, ti)

where s1s2s3 and t1t2t3 are triples of policies that determine strategies and
c(si, ti) are non-negative numerical costs of switching from policy si to policy ti.

To analyze the correlation between similarity of formulae and similarity of
their corresponding best strategies, for each two formulae f1 and f2 from the cor-
pus, with best strategies c1 and c2 respectively, values log d3(f1, f2) and dc(c1, c2)
were calculated. Then, the Pearson correlation coefficient between these sets of
values was calculated. The costs in the function dc were manually tuned to
achieve a maximal correlation coefficient. This procedure was legitimate and it
is closely related to the following question: for which group of policies (restart,



variable selection, literal selection) optimal choices differ the least for syntacti-
cally similar formulae? Only formulae solved in more than 2s were included in
the calculation. 7

The calculated correlation coefficient was 0.51 with the p-value less then
0.001. This can be considered a moderate, but important correlation, keeping in
mind the small number of policies that were used in the experiments and the
inherent instability of the SAT solving process. Hence, we can consider the third
hypothesis to be justified.

Magnitudes of costs in the function dc, suggest that for syntactically similar
formulae, the optimal restarting policy varies the least (thus being in some sense
the strongest common characteristic of syntactically similar formulae) and the
polarity selection policy varies the most.

4.2 Exploitation Phase

Evaluation of Strategy Selection Method on the SAT2002 Corpus. For evaluation
purposes the proposed strategy selection method was compared to (i) the “best-
fixed” strategy selection method which always uses the best fixed candidate
strategy8, and to (ii) the “oracle” (idealized) strategy selection method which
uses the best candidate strategy for each specific formula. The first one is a fair
choice for the lower bound of required performance and the second one represents
the upper bound for performance because it gives the best possible performance
over the set of candidate strategies on the SAT2002 corpus.

As the main measures of the overall quality of a strategy selection method
the total number of formulae that it solved and its median solving time were
used. There are strong reasons to base the evaluation on median instead on
mean and total solving time. First, one cannot account for the censored data —
solving times over the cutoff limit. If one chooses not to include these data in
the calculation then the mean and total solving time show preference for solvers
that solve less formulae because even if a hard formula is solved its solving time
is typically near the cutoff limit, and thus raises the mean and the total solving
time. On the other hand, if at least half of the formulae were solved, the median
time can be calculated. Also, median time is known to be less sensitive to outliers.

To estimate the performance on the SAT2002 corpus, similarly as in the
leave-one-out procedure, the solving time of each formula was computed for the
strategy selected based on the results of the training phase, but with that formula
excluded from the corpus. Table 2 shows the results for the two referent methods
and for the one proposed. Important results were achieved, especially keeping in
mind a rapid growth of the sorted solving times of formulae for all three methods,
as shown in Fig. 2. The differences in the numbers of the solved formulae for all
three methods seem small, but would be much higher if numerous easy formulae
were not taken into account.
7 Trivial formulae cannot discriminate between good and bad strategies. Also, vari-

ation of their solving time due to processor context switching is larger relative to
their solving time.

8 In our case the best strategy was (VS
1.0, 1.0/0.95, freq
V SIDS , PSneg

polarity caching, R100,1.5
minisat).



Method Number of solved Median solving
formulae time

“Best fixed” 1073 207.4s

Proposed 1135 92.6s

“Oracle” 1187 45.8s

Table 2. Comparison of strategy selection methods on SAT2002 corpus.

0 200 400 600 800 1000 1200

100

200

300

400

500

600

Formula number

Time
"Best fixed" method
Proposed method
"Oracle"

Fig. 2. Sorted solving times for different
ways of choosing the strategy. Ordinal
numbers in the sequence of the sorted solv-
ing times of the formulae are shown on the
X axis. Solving times are shown on the Y
axis.

0 5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

70

80

90

100

Rank of strategy

Percentage
of formulae "Best fixed" method

Proposed method

Fig. 3. Cumulative distribution function
of ranks of chosen strategies for the “best
fixed” method and the proposed method.
Ranks of strategies are shown on the
X axis, while percentage of formulae for
which strategies of that or smaller rank are
chosen is shown on the Y axis.

Given a strategy selection method, it is important to consider how often it
chooses best, good or bad strategies (especially when compared to some other
selection methods). For each formula, candidate strategies can be sorted in as-
cending order according to their corresponding solving times. Each strategy can
be given a rank according to its position in such sequence. A strategy with the
rank 1 is the most desirable for that specific formula. In Fig. 3 we present the cu-
mulative distribution function of the ranks of chosen strategies for the proposed
and for the “best fixed” method. The figure shows that the proposed method
chooses good strategies much more often than the “best fixed” method.

The histogram in Fig. 4 shows the number of formulae solved by the proposed
method in some percentage of a referent time, up to 200%. As a referent time
we use the solving time obtained by the “best fixed” method. Only formulae
that were solved either way were considered. 48 formulae are solved in more
than 200% of the referent time. There are 74 formulae that were solved by the
proposed method but not by the “best fixed” method, but only 12 that were
solved by the “best fixed” method and not by the proposed method. It can be



observed that much more formulae were solved faster than slower, compared to
the “best fixed” method.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

2

4

6

8

10

12

14

16

18

20

22

Percentage of formulae

Fig. 4. Histogram of the number of formulae solved by the proposed method in some
percentage of the referent time. Percentage of the referent time is shown on the X axes,
while the number of formulae solved in that percentage of the referent time is shown
on the Y axis.

These results show that the main thesis of this work — that intelligent choos-
ing of the solver’s strategy based on the syntax of the input formula, can signif-
icantly improve efficiency of a SAT solver — is true.

Evaluation of ArgoSmArT system on SAT2007 corpus. Based on the method-
ology described above, we implemented a SAT solving system ArgoSmArT (on
top of the ArgoSAT solver).

For an additional evaluation of the proposed methodology, we used the
SAT2007 corpus and showed that performance improvement achieved on one
corpus is present on a different corpus too.

The formulae from the SAT2007 corpus are much harder then the ones from
the SAT2002 corpus and the median time cannot be calculated, since in cutoff
time of 600s less than a half of the formulae can be solved. Thus, we present 20-th
percentile of the solving times9. The results of the comparison of ArgoSmArT
to its base solver ArgoSAT are shown in Table 3 (ArgoSAT used the best
fixed strategy detected in the experiments on the SAT2002 corpus).

Notice that the performance improvement achieved on the SAT2002 corpus
in the number of solved formulae is also present on the SAT2007 corpus. The im-
provement in the solving time is also significant. As said above, these two corpora
share only 12 formulae, and only one of them was solved by the ArgoSmArT
within 600s, so the improvement cannot be attributed to overlapping of the
training and the test set.

9 20-th percentile of the solving times is the value that splits the sorted solving times
in two parts, the lower one having 20% of the total number of values.



System No. of solved 20-th percentile
formulae of solving time

ArgoSAT 219 311.6s

ArgoSmArT 239 249.5s

Table 3. Results of comparison between ArgoSAT and ArgoSmArT on the SAT2007
corpus.

5 Related Work

Hypotheses like H2 and H3 are already discussed as a basis for instance-based
solving of the algorithm selection problem [SM08]. Algorithm selection for con-
straint satisfaction problems (CSP) based on performance prediction is described
in [LL98]. A reinforcement learning based approach to choose variable selection
policy for CSP, with only preliminary results is described in [XSS09]. In quan-
tified boolean formulae (QBF) solving, multinomial logistic regression was suc-
cessfully used for dynamic, online selection of variable selection policies[SM07].
Strategy selection for MiniSAT based on neural networks that gave limited
results is described in [Kib07].

Features used for classification in this paper are first described in [NBH+04]
for prediction of a solver’s running time and were later used in SATzilla system
[XHHLB08]. SATzilla is the system that uses linear regression predictions of
solver running times to select one of its component solvers for solving an input
formula. As reported in [XHHLB08] for the corpus SAT2007, evaluation on the
random category of SAT instances, demonstrated a significant improvement in
running time. Average running time for SATzilla system was around 90s, while
its best component solver average was 290s. On the crafted category, SATzilla
average was around 150s, compared to its best component solver average of 280s.
For the industrial category, this improvement was smaller, but still significant —
260s compared to 330s. In 27% of cases SATzilla chooses its best component
solver [XHHLB07].

While both SATzilla and ArgoSmArT adjust the solving process to the
input formula, there are important differences between these two approaches.
First, SATzilla is the system that chooses among its component solvers (7
solvers were used at the SAT competition 2007), and these solvers are used as
they are. On the other hand, our approach aims at boosting performance of
just a single, arbitrary, base solver by selecting strategies appropriate for an
input formula (in the current setup it chooses between 21 strategies that happen
to be the best for some of the families from the training corpus). Therefore
these two approaches can be considered complementary. The advantage of the
SATzilla approach, compared to the ArgoSmArT approach, is that it offers
an estimate of the running time. On the other hand, an important advantage of
ArgoSmArT is that it can detect a family that the input formula belongs to.

Stochastic optimization of SAT solver parameters is described in [HBHH07].
It could be used for finding better strategies within our approach.



6 Conclusions and Future Work

We proposed a methodology for instance-based selection of solving strategies
that can be applied to an arbitrary SAT solver which supports multiple solving
strategies. We showed that the family a formula belongs to can be automatically
recognized and that precision achieved was excellent. Also, we demonstrated that
for each family of formulae, among many possible strategies, just a small number
of strategies is appropriate for its solving. Along with significant correlation
between syntactical similarities of formulae and similarities of strategies most
appropriate for their solving, these conclusions form a firm basis for our strategy
selection methodology.

The methodology was evaluated on two representative corpora. As for the
overall performance, on the SAT2002 corpus a greater number of formulae was
solved and the median time dropped more than 50%. The performance im-
provement was also demonstrated on a corpus different from the one the system
was trained on. Overall, the results obtained are very good and show that the
methodology is practically applicable and that further research in this, still new
field, is feasible. We are planning to work on additional statistical analyzes of
gathered data in order to gain a deeper insight into the nature of our best
strategies and relationships between their component policies. We plan to fur-
ther improve our system by using the stochastic parameter optimization, which
would significantly decrease duration of the training phase. Also, we will try to
combine our approach with the SATzilla approach by training SATzilla to
choose between different strategies of a solver. While inspecting our data we came
across the incompatibility of the MiniSAT forgetting strategy we used with the
fast restarting strategies when forgetting quickly ceases. Impacts of these in-
compatibilities should be investigated and potentially better results achieved
by changing the forget strategy. Also, a deeper analysis of behaviour of best
strategies for k-SAT instances is planned.
Acknowledgements. We thank Mathematical Institute of Serbian Academy of
Sciences and Arts for providing us access to their cluster computer.

References

[Bie08] Armin Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Mod-
eling, and Computation, 2008.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In
STOC ’71: Proceedings of the Third Annual ACM Symposium on Theory
of Computing, ACM, 1971.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A Machine Pro-
gram for Theorem-Proving. Commun. ACM, 1962.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quantifi-
cation Theory. J. ACM, 1960.

[ES04] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory
and Applications of Satisfiability Testing, 2004.

[GKSS07] C P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability Solvers.
In Handbook of Knowledge Representation. Elsevier, 2007.



[HBHH07] Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. Boosting
Verification by Automatic Tuning of Decision Procedures. In FMCAD ’07:
Proceedings of the Formal Methods in Computer Aided Design, 2007. IEEE
Computer Society.

[KG07] S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL. In FroCoS ’07: LNCS 4720, 2007.

[Kib07] Raihan H. Kibria. Evolving a Neural Net-Based Decision and Search
Heuristic for DPLL SAT Solvers. In IJCNN, 2007.

[LL98] Lionel Lobjois and Michel Lemaitre. Branch and Bound Algorithm Selec-
tion by Performance Prediction. In In AAAI, AAAI, 1998.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal Speedup
of Las Vegas algorithms. Information Processing Letters, 1993.

[Mar08] F. Marić. Formalization and Implementation of SAT Solvers. Journal of
Automated Reasoning, submitted, 2008.

[Mar09] F. Marić. Flexible Implementation of SAT solvers. In SAT2009, submitted,
2009.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings
of the 38th Design Automation Conference (DAC’01), 2001.

[NBH+04] Eugene Nudelman, Kevin L. Brown, Holger H. Hoos, Alex Devkar, and
Yoav Shoham. Understanding Random SAT: Beyond the Clauses-to-
Variables Ratio. In Principles and Practice of Constraint Programming
- CP 2004, 2004.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). J. of the ACM, 2006.

[PD07] K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In SAT ’07: LNCS 4501, 2007.

[SM07] Horst Samulowitz and Roland Memisevic. Learning to Solve QBF. In Pro-
ceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
2007. AAAI Press.

[SM08] Kate Smith-Miles. Cross-Disciplinary Perspectives on Meta-Learning for
Algorithm Selection. ACM Comput. Surv., 2008.

[TJK06] Andrija Tomovic, Predrag Janicic, and Vlado Keselj. n-Gram-Based Clas-
sification and Unsupervised Hierarchical Clustering of Genome Sequences.
Computer Methods and Programs in Biomedicine, 2006.

[XHHLB07] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. The Design
and Analysis of an Algorithm Portfolio for SAT. Principles and Practice
of Constraint Programming, 2007.

[XHHLB08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Ar-
tificial Intelligence Research, 2008.

[XSS09] Yehua Xu, David Stern, and Horst Samulowitz. Learning Adaptation to
Solve Constraint Satisfaction Problems. In LION 3, 2009.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient Conflict Driven Learning in a Boolean Satisfiability Solver.
In International Conference on Computer Aided Design (ICCAD), 2001.


