INFORMATICA, 2009 \ol. 0, No. 0, 1-0

Formal Correctness Proof for DPLL Procedure*

Filip MARI C, Predrag JANTIC,

Faculty of Mathematics, University of Belgrade
Studentski trg 16, Belgrade, Serbia
E-mail: filip@matf.bg.ac.rs, janicic@matf.bg.ac.rs

Abstract. The DPLL procedure for the SAT problem is one of the fundamlent
algorithms in computer science, with many applications iarage of domains, including
software and hardware verification. Most of the modern SAVese are based on this
procedure, extending it with different heuristics. In thaper we present a formal proof
that the DPLL procedure is correct. As far as we know, thihésfirst such proof. The
proof was formalized within the Isabelle/lsar proof assistsystem. This proof adds to
the growing body of formalized mathematical knowledge araiso provides a number
of lemmas relevant for proving correctness of modern SAT@MAJ solvers.

Key words: SAT problem, DPLL procedure, formal proofs, Isabelle, Isar

1. Introduction The propositional satisfiability problem (SAT) is the prob-
lem of deciding whether there is a truth assignment undechwvaigiven propo-
sitional formula (in conjunctive normal form) evaluatedttoe. It is a canonical
NP-complete problem (Cook, 1971) and it holds a centraltiposin the field of
computational complexity.

One of the first algorithms for testing satisfiability is a tech and back-
tracking procedure called Davis-Putham-Logemann-Lowef@ short DPLL)
procedure (Davis et al., 1960, Davis et al., 1962). Althotigdre have been
many improvements to this procedure (including technigadied backjumping,
conflict-driven lemma learning, restarts, etc.) it is siltore of the majority of
the state-of-the-art complete SAT solvers (e.g., zChafigkéwicz et al., 2001),
MIniSAT (Eén et al., 2003) and their successors). Moder Sélvers show ex-
cellent performance even for huge formulae. They are usedany practical
applications (electronic design automation, hardware softivare verification,
scheduling, etc.). SAT solving and modifications of the DRirbcedure such as
DPLL(T) (Nieuwnhuis et al., 2006) are also used for SMT (Satisfigiilodulo
Theories) — the problem of deciding whether a given formsilsatisfiable with
respect to a background first-order the@ryRanise et al., 2006). SMT solving

“This work was partially supported by Serbian Ministry of@uie grant 144030.

2 F. Maric et al.

also has many important industrial applications. For a eyuf SAT solvers,
their performances, and applications see, for instanaeeft@l., 1997, Zhang et
al., 2002, Le Berre et al., 2005).

Despite their significance and wide applications, therestiteno formal
correctness proofs for SAT and SMT solvers, neither for ttgiral DPLL pro-
cedure nor for its modern successors. For most of the moderis&vers, there
are no even informal correctness proofs. In this paper weeaddhis issue and
present a first formalized correctness proof for the DPLLcpdure, a proof that
can be verified by an independent and reliable proof checkistgm. In its forty-
five years history, there were no doubts about the correstofethis algorithm,
but we believe that it is important to have its correctnesopformalized for,
at least, the following two reasons: first, the correctnessffor the DPLL pro-
cedure will be useful for checking correctness of modern 8Ad SMT solvers,
some of which are still unreliablesecond, this proof adds to the growing body of
formalized, verifiable mathematical knowledge (which ipartant as the rigour,
reliability, and objectivity of formal proofs is vital in nmy computer science
applications, such as software and hardware verification).

Our correctness proof for the DPLL procedure is formalizathiw |s-
abelle proof assistant and for object-level proofs we uae (Istelligible semi-
automated reasoning) language, natively supported irelgalf-or definitions of
some functions we use primitive recursion, also nativelypsuted in Isabelle.
We also use Isabelle’s built-in theory of lists (Nipkow et, 2005; pp. 16) and,
to a limited extent, Isabelle’s built-in theory of sets (pfor finite sets) (Nipkow
et al., 2005; pp. 109).

Overview of the papein Section 2 we give background information on the
DPLL algorithm, on formal proofs and the Isabelle/Isar systand on program
verification. In Section 3 we give basic notation, definiscamd properties of
propositional logic, required for our proof. In Section 4 giee a formalization of
the DPLL procedure (with one concrete implementation dised in Appendix),
and in Section 5 we prove the procedure’s total correctreemsiél correctness
and termination). In Section 6, we discuss some technidalld@nd give some
fragments of our formalization made in Isabelle/Isar. lota 7 we briefly dis-
cuss related work, and in Section 8 we draw final conclusiodsiscuss future
work.

2For instance, over the previous years, several SMT soluensd out to be unsound according
to the results from SMT competitiorgtp://www.smtcomp.org/

Formal Correctness Proof for DPLL Procedure 3

Procedure DPLL(CNF formulé)
if ®is emptyreturn yes.
else ifthere is an empty clause #nreturn no.
else ifthere is a pure literdlin @ return DPLL(®(1)).
else ifthere is a unit claus@/} in @ return DPLL(®(1)).
else
select a variable occurring in®.
if DPLL(®(v))=yes
return yes.
else
return DPLL(®(—w)).
end
end

Fig. 1. DPLL procedure

2. Background

Davis-Putnam-Logemann-Loveland (in short DPLL) procedlihe Davis-
Putnam procedure was introduced in 1960 by Martin Davis aifetyHPutnam
(Davis et al., 1960). Two years later, Martin Davis, Georggémann, and Don-
ald W. Loveland introduced a refined version of the algoritimmwhich they
replaced thelimination ruleby asplitting rule(Davis et al., 1962). In this newer
version, the splitting rule leads to two smaller subprots€one for each truth
value for a selected variable), instead of a single, pogs#sber, subproblem
generated by the elimination rule. Nowadays, this latesieerof the algorithm
is often referred to aBPLL procedure The algorithm is shown in Figure 1. In
the algorithm,® is a set of propositional clauses tested for satisfiabibty/.)
denotes the formula obtained froinby substituting a literal by T, by substi-
tuting the opposite literal of by 1, and by simplifying afterwards. A literal is
pure if it occurs in the formula but its opposite literal does occur. A clause is
unit if it contains only one literal. A non-recursive versiof the algorithm can
be found in (Davis et al., 1994). There are also rule basecrig¢ions of some
more advanced versions of this algorithm (Krsti¢ et alQ2MNieuwnhuis et al.,
2006).

The selection of a variable within the given algorithm is critical for its
performance. Choosing a variable may be trivial — choosifigsa remaining
variable or a random variable, but it can also be very complexhe original
version of the procedure, the variable occurring in the fitatise of minimal
length was chosen. The worst case complexity for this preeedn 3-SAT (3-

4 F. Maric et al.

SAT is a variant of the SAT problem, with all clauses conspf exactly three
literals) isO(2°-752) (Cook et al., 1997). For more references on selecting a split
variable and on worst case complexity analysis of the DPldcedure see, for
instance, (Cook et al., 1997, Irgens et al., 2004).

Formal proofs and IsabelleOver the last years, in all areas of mathemat-
ics and computer science, with a history of huge number ofefthpublished
mathematical proofs and also flawed software and hardwargaoents, for-
mal proofs (machine verifiable, given in object-level forimterms of axioms
and inference rules) have gained more and more importamegeTare growing
efforts in this direction, with many extremely complex matiatical theorems
formally proved and with many software tools producing and checking formal
proofs. Isabelle is a generic theorem prover that suppaasiaty of logics, with
Gentzen’s natural deduction as the basic built-in logia(§an, 1994). Distinc-
tive Isabelle’s features include representation of logithin a meta-logic and
the use of higher-order unification to combine inferencesulsabelle can be
applied to reasoning in pure mathematics or verificationarhguter systems.
Isabelle is one of the most popular theorem proving systemsdays.

Readable formal proofs and Isdrheorem proving system supporting both
interactive proof development and some degree of automhtive become quite
successful in sizable applications in recent years. Matayh are based on tradi-
tional proof scripts which explicitly list all axioms andfeérence rules used in ev-
ery single proof step. Despite success of semi-automatadng systems based
on such scripts in formalizing fragments of mathematics @nmdputer science,
they are still not accepted by a wide range of researcheesiftilligible semi-
automated reasoning (Isar) (Wenzel, 2007) approach taabdadormal proof
documents aims to bridge the semantic gap between inteatians of proof
given by state-of-the-art interactive theorem provingeys and an appropriate
level of abstraction for user-level work. Isar is an alteérreaproof language in-
terface layer, beyond traditional formal proof tactic ptsj which is much more
readable for the users. The Isabelle/Isar system providestarpreter for the
Isar formal proof document language, and readable Isarf gtoocuments are
converted and executed as series of low-level inferenges steallows users to
express proofs in a human-friendly way but still have prdb&t are automati-
cally formally verified by an underlying proof system andttredy only on valid
axioms and inference rules.

SFor a list of selected formally proved theorems see, forimse http://www.cs.ru.nl/
~ freek/100/

Formal Correctness Proof for DPLL Procedure 5

Program verification Program verification is the process of formally prov-
ing that a computer program meets its specification. Progeification is old,
but very much active field. Following the lessons from magftwgare failures in
recent years, more and more efforts have been investedifigld. Many funda-
mental algorithms and properties of data structures haga ftemalized. Also,

a lot of work has been devoted to formalization of compilpregram semantics,
communication protocols, security protocols, etc. Formeaification is vital for
SAT and SMT solvers and first steps in this direction have Inegte. For a short
overview of results in program verification see Section 7.

3. Notation and Definitions In this section, we introduce notation, defini-
tions, and basic propositions used in our formalized coness proof for the
DPLL procedure. Our proof is almost self-contained, so heeealso define
notions (and notation) of literals, clauses, formulaeisfability, etc. All no-
tions introduced here are also formalized within Isabgll@gher order logic
(Isabelle/HOL). Some of them are defined by primitive remmwssupported in
Isabelle/HOL.

Formulae and logical connectives of this meta-logic ¢, -, =, <)
are written in the usual way. Ternafy —then—eclse connective is also used:
if f then fy else fo denotesf = fi A —f = fo. The symbol= denotes
syntactical identity of two expressiofis.

The theory that we built for expressing correctness of thelDfrocedure
uses Isabelle’s built-in theory of lists and Isabelle’sltsun theory of sets (only
for finite sets). Figure 2 informally describes the notiomsri these theories that
we use.

We assume that all meta-logic formulae in the following tase implicitly
universally quantified, if not stated otherwise. We use tylogjic, but for better
readability, when printing formulae we omit types, and unefollowing conven-
tion:

vbl denotes a variable and has the tyyad
1,I',11,l1o,...denote literals and have the typiteral;

¢, d,c1,co,...denote clauses and have the tyflause
F,F' F|, Fy,...denote formulae and have the tyl|femulg
v, v, v1, v9, ... denote valuations and have the tyy@uation

Definition 1. Avariableis identified with a natural number.

“Note that in this presentation we make a clear distinctiolwéen syntactical identity and
logical equivalence and use different symbols for themrand <> (while in Isabelle/HOL these two
notions are denoted by the same symbg)|,

6 F. Maric et al.

[] the empty list.

le1, ..., en] the list ofn given elements,, ..., e,.

e € list e is a member of the lidtist.

e#list the list obtained by prepending elemertb the listlist.
list1Qlisto the list obtained by appending lidigt; andlists.

head(list) the first element of the ligtst (assuming the list is non empty).
tail(list) the list obtained by removing the first element of thelist

list \ e the list obtained by removing all occurrences of the element

e from the listlist

list1 \ listz the list obtained from the ligist; by removing from it
all elements of the lististo.

list; C listo all elements ofist; are also elements dfsts.

[list]| the length of the listist.
{} the empty set.
e € set e is a member of the sett.

set1 U seto the union of the setset; andsets.
Fig. 2. Notions from the theory of lists and the theory of sets thateed.

Definition 2. A literal is either a positive variable (denoted byvbl) or a
negative variable (denoted byvbl).

Definition 3. A clauseis a list of literals.
Definition 4. Aformulais a list of clauses.
Definition 5. A valuationis a list of literals.

Definition 6. Avariable of a litergldenotedar(l), is defined in the follow-
ing way:var(+wvbl) = var(—vbl) = vbl.

Definition 7. A opposite literal of a literaldenoted, is defined in the fol-
lowing way:+wvbl = —vbl, —vbl = +vbl.

Notice that we abuse the notation and overload some synfBmigxample,
the symbole denotes both set membership and list membership. It is @so u
to denote that a literal occurs in a formula.

Definition 8. A formulaF' contains a literal (and the literall occurs in the
formulaF’), denoted € F, iff (3¢)(c € F Al € ¢).

Symbolwvars is also overloaded and denotes the set of variables ocgunrin
a clause, formula, valuation, defined by primitive recumnsio

Formal Correctness Proof for DPLL Procedure 7

Definition 9. A set of variables that occur in a clauselenotedars(c), is
defined in the following way:

vars([]) = {}

vars(l # ¢) = var(l) Uvars(c)

A set of variables that occur in a formulg denotedvars(F), is defined in the
following way:

vars([]) = {}

vars(c # F) = vars(c) Uvars(F)

A set of variables that occur in a valuationdenotedvars(v), is defined in the
following way:

vars([]) = {}

vars(l # v) = var(l) Uvars(v)

The semantics is introduced by the following definitions.

Definition 10. A literal [is true in a valuation, denoted = [, iff | € v.
A clausec is true in a valuation, denoted F ¢, iff (31)(l € cAv E D).
A formulaF is true in a valuation, denotedy F F, iff (V¢)(c € F = v E

Definition 11. A literal [is false in a valuatiow, denoted) F—1, iff | € v.

A clauser is false in a valuatiow, denoteds F— ¢, iff (VI)(l € ¢ = v = 1).

A formulaF is false in a valuation, denotedy F— F, iff (3¢)(c € F Av E
—c).

Definition 12. A valuationv isinconsisteniff it contains both literal and its
oppositei.e.(31)(v E IAv E). Avaluation isconsisteniff it is not inconsistent.

Definition 13. A modelof a formulaF’ is a consistent valuatiom under
which F is true i.e.,model(v, F) iff consistent(v) Av E F. A formulaF is
satisfiable denotedsat(F) iff it has a model i.e.(3v)(model (v, F))

The following proposition gives some basic properties efribtions we have
justintroduced. These properties were formulated andguravisabelle/Isar and
used in the correctness proof for the DPLL procedure.

8 F. Maric et al.

Proposition 1.

Basic properties of opposite literals:

(A1) 1=
(A4) 1#1

(A5) war(l) = var(l)

(Aﬁ) U(IT(ll) 71}0/]"(12) S L=V =I

Basic properties ofvars:

l € c=wvar(l) € vars(c)

l € F = var(l) € vars(F)

¢ € F = vars(c) Cvars(F)

I €v=var(l) € vars(v)

var(l) € vars(c) & lccViecce
var(l) € vars(F) < le FVIeF
var(l) € vars(v) < vE IV v Eal

w

ot

T w e

Basic properties of consistent valuations:
(C1) consistent([])
(C2) inconsistent(v\ 1) = inconsistent(v)

Basic properties of the relationk:
(D1) vEc\l =vkc
(D2) war(l) ¢ vars(F)AvEF = v\ [l,]|F F

Basic properties of models and formula satisfiability:
(E1) model(v,F) N vbl ¢ vars(F) =
(Fv")(model(v', F) A vbl ¢ vars(v'))
E2) FCF' = (sat(F') = sat(F))
(E3) sat([])
E4) []€F = -sat(F)

4. Formalization of the DPLL Procedure In this section, we present a
formalization of thebpLL procedure and all required notions. We give a special
attention to the notions giure literalandunit clause essential for certain steps of
the procedure. All the given proofs are rigorously formethand verified within
Isabelle/Isar.

Formal Correctness Proof for DPLL Procedure 9

4.1. Substitution One of the basic steps of tleLL procedure is substitu-
tion of a literal by logical constant§ and_L, and simplification of the obtained
formula. This operation is formalized by the following défion.

Definition 14. F[l — T]is the formula that is obtained frotf by deleting
all clauses that contaihand deleting all occurences of the literallt is defined
by primitive recursion:

)
—
|

[]

if [€ cthen
F[Z — T]

else ifl € ¢ then
(c\)#F[l - T]

o
Ik
=

l
=

I

else
C#F[l — T]

F[l — L] denotesF'[l — T].

The following proposition (proved in Isabelle/Isar) givesme basic proper-
ties of of this operation.

Proposition 2.

(1
(2
(3
(4
(5
(6
(7
(8

o D

var(l) ¢ vars(F[l — T))

var(l) ¢ vars(F) = F[l—- T]=F

I¢ FANI¢F = F[l - T|=F[l - 1]=F
model(v, F) ANl ev = model(v, F[l — T])
model(v, F) A var(l) ¢ vars(v) = model(v, F[l — T])
vEF[l—T] = (I#v)EF

(] € F = =sat(F[l — L1])

lIeFANI¢F = F[l - T|CF[l - 1]

The following lemma suggests that the satisfiability of arfata can be, by
using substitution, checked by testing the satisfiabilftjwm smaller formulae.
Since this is a fundamental lemma in the proof of the DPLL ectimess, we give
a sketch of its proof. This sketch is still very close to itsnfial, Isabelle/Isar
counterpart. It also illustrates the use of the listed prige

Lemma 1 (Split rule lemma)

sat(F) < sat(F[l — T]) V sat(F[l — 1])

10 F. Maric et al.

Proof:

(=) : Let us assumeat(F). This means that there is a valuatiorsuch that
model(v, F), i.e.,consistent(v) andv E F. We consider two cases:

1. var(l) ¢ vars(v): from Proposition 2(5) it follows that is a model for
F[l — T], and, therefore, it holds thatt(F[l — T]).

2. var(l) € vars(v): from Proposition 1(B7), either = [or v E-1 holds.
(a) v E I: from Proposition 2(4) it follows that is a model forF'[l — T],

and, therefore, it holds thaut(F [l — T]).

(b) v E I: from Proposition 2(4), it holds thatis a model forF[l — T],

and, therefore, it holds thatut(F[l — L]).

(<) : Letusassumeat(F[l — T]) V sat(F[l — 1]).

Consider the case whemt(F[l — T]) holds. This means that there is a
valuationv such thatnodel (v, F), i.e.,consistent(v) andv E F[l — T].
From Proposition 2(1), it holds thatur(l) ¢ vars(F[l — T]). From
Proposition 1(E1) applied to the formuld]l — T], variablevar(l),
and the valuatiorv, it follows that there is a valuation’ such that
consistent(v'),v' E F[l — T]andvar(l) ¢ vars(v'). Then, from Propo-
sition 2(6) applied to the valuatios, it follows that(l # v’) E F. Since
var(l) ¢ vars(v'), it follows I ¢ v and thereforeonsistent(l # v').
Finally, sat(F') holds sincd # v’ is a model ofF".

The case wherat(F[l — 1]) holds is analogous to the previous case,

with the literall replaced by. O

This lemma inspires a naive, but still sound and completecguiure for
satisfiability checking. In some situations, one of the teofulaesat(F[l —

T]) andsat(F[l — L]) from the above lemma does not need to be considered.

For instance, if the first disjunct is satisfied, then the sdoone does not need
to be checked (as indicated by the algorithm shown in Figlirélso, in some
special cases discussed below it suffices to consider jesbbtimese disjuncts.

4.2. Unit ClausesOne sort of optimization of the mentioned naive proce-

dure for satisfiability checking is based on exploitingt clauses

Definition 15. A clausec is a unit clausdff it has only one literal, i.e.¢ =
[7]. Then we also say thais aunit literal

The following lemma shows that when a formula contains a olaitise,
checking its satisfiability can be reduced to checking Baligity of just one
smaller formula (in constrast to Lemma 1).

Formal Correctness Proof for DPLL Procedure 11

Lemma 2 (Unit clause rule lemma)
[l € F = (sat(F) < sat(F[l — T)))

Proof: By Proposition 2(7) it holds thdt] € F' = —sat(F[l — 1]), sothe
lemma is a direct consequence of the split rule lemma (Lemma 1 O

4.3. Pure Literals Another sort of optimizations of the naive procedure for
satisfiability checking is based qure literals

Definition 16. A literal [is apure literalin F'iff [€ FFandl ¢ F.

Lemma 3 (Pure literal rule lemma)
€ FALEF = (sat(F) & sat(F[l — T)))
Proof: By Proposition 2(8) it holds that

I€EFANIE¢F = Fll - T]CF[l — 1],

so the lemma is a simple consequence of the Proposition &iited toF'[| —
T]andF[l — 1], and the Split rule lemma (Lemma 1). O

4.4. Definition of the DPLL Procedure A recursive definition of the
DPLL procedure is given in the following definition.

Definition 17.
dpll(F) <

if =[] then
T

else if[] € F'then
1L

else ifhasPureLiteral(F) then
dpll(F[get PureLiteral(F) — T])

else ifhasUnit Literal (F') then
dpll(F[getUnitLiteral(F) — T))

else ifdpli(F[selectLiteral(F') — T] then
T

elsedpll(F[selectLiteral(F) — L]

Notice that the functiongetUnit Literal, get Pure Literal andselect Literal
returning literals and Boolean functiortgisUnitLiteral, hasPureLiteral,

12 F. Maric et al.

must be effectively defined in order to have an effective DRItbcedure. As
said in Section 2, this can be done in many ways. The choicepéeific imple-
mentation of these functions, can affect the procedurepadnce but does not
affect its correctness, as long as they meet the followiegifipation (their sorts
are obvious from the context):

(1) hasUnitLiteral(F) =

[getUnitLiteral(F)] € F
(2) hasPureLiteral(F) =

getPureLiteral(F) € F A getPureLiteral(F) ¢ F
(3) FAAEF =

selectLiteral(F) € F

One simple way to define these functions is given in Appendix.

5. Termination and Correctness of the DPLL procedure In this section
we prove termination and, finally, correctness of the DPLagedure. Our proof
roughly follows the informal proof given in (Davis et al.,94). In Isabelle spirit,
termination is ensured by defining a measure that is deatdpseach recursive
call of the procedure. This property is ensured by provinges# propositions
corresponding to different recursive calls.

5.1. Termination In order to prove termination of the specified procedure,
we show that the total number of literals in all clausesrtbfs decreased by
each recursive call.This number, denoted byum Literals(F), is defined by
primitive recursion.

Definition 18.

numLiterals([]) = 0
numLiterals(c # F) = |c¢| + numLiterals(F)

From the following proposition it follows that the total niber of literals in
Fis reduced by each recursive call. Because of that, thertataber of literals in
the formula can be used as a decreasing measure suitable¥aorgtermination
of the DPLL procedure. This measure and the following prajfmsare used by
Isabelle/Isar for the automatic proof of termination.

5There are other suitable termination measures that candzeasswell (e.g., the number of
occuring variables).

Formal Correctness Proof for DPLL Procedure 13

Proposition 3.

(1) 1€ F = numlLiterals(F[l — T]) < numLiterals(F)
(2) 1€ F = numlLiterals(F[l — 1]) < numLiterals(F)
(3) F£UAEF =

numLiterals(F[selectLiteral(F) — T]) < numLiterals(F)
(@) F£AEF =

numLiterals(F[selectLiteral(F) — L]) < numLiterals(F)
(5) hasUnitLiteral(F) =

numLiterals(F[getUnitLiteral(F) — T]) < numLiterals(F)
(6) hasPureLiteral(F) =

numLiterals(F[get PureLiteral(F) — T]) < numLiterals(F')

5.2. CorrectnessFinally, we can prove the correctness of the procedure

defined by Definition 17.

Theorem 1.
dpll(F) & sat(F)
Proof: As a base of the inductive proof, we consider the cases inhthie
function does not perform a recursive call. There are twi swanches:

e If ' =[] then, by Proposition 1(E3)ipll(F') = T andsat(F) = T, SO
the conjecture trivially holds.

e If F# []and[] € F then, by Proposition 1(E4¥pll(F') = L and
sat(F) = L, so the conjecture trivially holds.

Now, let us assume that the conjecture holds for each reeucsil, and let
us show that the conjecture holds for the top level procedalie Therefore, let
us assume the following inductive hypotheses.

(FAAN¢EF) =
(hasPureLiteral (F) =
dpll(F[get PureLiteral(F) — T]) < sat(F[getPureLiteral(F) — TJ))

(F#£[] N[]¢F AN —hasPureLiteral(F)) =
(hasUnitLiteral(F) =
dpll(FgetUnitLiteral(F) — T]) < sat(F[getUnitLiteral(F) — T]))

14 F. Maric et al.

(F#[] AN[]¢ F A —hasPureLiteral(F) A —hasUnitLiteral(F)) =
dpll(F[selectLiteral(F) — T|) < sat(F[selectLiteral(F) — T])

(F#[] AN[]¢ F A —hasPureLiteral(F) A —hasUnitLiteral(F)) =
(—dpll(F[selectLiteral(F) — T]) =
dpll(F[selectLiteral(F) — 1]) < sat(F[selectLiteral(F) — 1]))

Let us consider different branchesigf-then—else in the definition ofdpll
function:
o If FF#[]and[] ¢ F, andhasPureLiteral(F'), then by thelpll
definition:
dpll(F) < dpll(F[getPureLiteral(F) — T])
Also, by the inductive hypothesis, it holds:

dpll(F|get PureLiteral(F) — T]) < sat(F[getPureLiteral(F) — T))

From the specification afet PureLiteral and the assumption
hasPureLiteral(F), it holds that

getPureLiteral(F) € F N getPureLiteral(F) ¢ F. Then, by
Lemma 3:

sat(F[getPureLiteral(F) — T]) < sat(F)
Thereforedpll(F) < sat(F).
o If F#[]and[] ¢ F and—hasPureLiteral(F), and
hasUnitLiteral(F), then by thelpll definition:
dpll(F) < dpll(F[getUnitLiteral(F) — TJ])

Also, by the inductive hypothesis, it holds:

dpll(FgetUnitLiteral(F) — T]) < sat(F[getUnitLiteral(F) — T])

Formal Correctness Proof for DPLL Procedure 15

From the specification afetUnit Literal and the assumption
hasUnitLiteral (F), it holds thafgetUnit Literal (F')] € F. Then, by
Lemma 2:

sat(FgetUnitLiteral(F) — T]) < sat(F)

Thereforedpll(F) < sat(F).

o If FF# []and[] ¢ F and—hasPureLiteral(F), and
—hasUnitLiteral(F') then, from the specification @pll and the
definition ofi f — then — else connective, it holds that

dpll(F) < (dpll(F[selectLiteral(F) — T]) = T) A
(—dpll(F[select Literal(F) — T]) =
dpll(F[selectLiteral (F') — L])

Therefore, it holds that

dpll(F) < dpll(F[selectLiteral(F) — T]) V
dpll(F[selectLiteral(F) — 1]).

If dpll(F[selectLiteral(F') — T]) then, by the inductive hypothesis, it
holds thatsat(F'[select Literal(F') — T]). Otherwise, if
—dpll(F[selectLiteral(F) — T]) anddpll(F[select Literal(F) — 1))
hold then, by the inductive hypothesigit(F[select Literal(F) — L))
holds. Therefore:

dpll(F) < sat(F|[selectLiteral(F) — T]) V
sat(F[selectLiteral(F) — L1]).

Then, by Lemma 1, it holds thdpll(F) < sat(F).

([
This proof, together with the termination argument, prabestotal correct-
ness of theipll function.

6. Formalization in Isabelle/Isar Our formalization of the DPLL proce-
dure and its correctness proof in Isabellefidaithfully follow the definitions

6All proof documents are available frohitp://argo.matf.bg.ac.rs

16 F. Maric et al.

given in the previous sections. Using this formalizatianeéfective, operational
ML implementation of the DPLL procedure is automaticallyhgeated from Is-
abelle, yielding a formally verified (although not quite eiéint) SAT solver that
is guaranteed to be correct (Haftmann, 2008). As an exaingte,we give some
fragments of Isabelle/Isar code that formalizes some ottment given in the
previous sections.

Definitions 1 and 2:

types Variable = nat
datatype Literal = Pos Variable | Neg Variable

Definitions 6 and 7:

text{ =* The variable of a literal *}

consts var .. "Literal => Variable"

primrec

"var (Pos v) = V"

"var (Neg v) = v"

text{ * The opposite of a given literal *}
consts opposite :: "Literal => Literal"

primrec

"opposite (Pos v) = (Neg v)"
"opposite (Neg v) = (Pos v)"

The DPLL procedure, as defined in Section 4.4:

function dpll::"Formula => bool"
where
"(dpll formula) =
(if (formula = []) then
True
else if (] mem formula) then
False
else if (hasPureLiteral formula) then
(dpll (setLiteralTrue
(getPureLiteral formula) formula))
else if (hasUnitLiteral formula) then
(dpll (setLiteralTrue
(getUnitLiteral formula) formula))
else if (dpll (setLiteralTrue
(selectLiteral formula) formula)) then
True
else
(dpll (setLiteralTrue

Formal Correctness Proof for DPLL Procedure 17

(opposite (selectLiteral formula)) formula))

)
by pat_completenesss auto

termination

by (relation "measure (% formula. (numLiterals formula))")

(auto simp add: dpllITermination_1 dpllTermination_2
dpllTermination_3 dpllTermination_4)

The proof of correctness of the DPLL procedure, correspanth the outlined
proof given in Section 5:

lemma dpliCorrectness: “(dpll F) = (satisfiable F)"
proof (induct F rule: dpll.induct)
case (inductiveStep formula)
note inductive_hypothesis = this
show ?case
proof (cases "formula = []")
case True
thus ?thesis
by (simp add:emptyFormulalsSatisfiable)
next
case False
show ?thesis
proof (cases “[] mem formula")
case True
with ‘formula "= []' show ?thesis
by (simp add:formulaWithEmptyClauselsUnsatisfiable)
next
case False
show ?thesis
proof (cases "hasPureLiteral formula")
case True
let ?pl = "getPureLiteral formula"
hence "?pl el formula" and "opposite ?pl el formula"
by (auto simp add: getPurelLiterallsPure)
with ‘formula "= []' “[] mem formula’
‘hasPureLiteral formula’
inductive_hypothesis
pureLiteraRule [of "?pl" "formula"]
show ?thesis
by auto
next
case False
show ?thesis
proof (cases "hasUnitLiteral formula")
case True
let ?ul = "getUnitLiteral formula"
hence "[?ul] mem formula"
by (simp add: getUnitLiterallsUnit)
with ‘formula "= [“[] mem formula‘

18 F. Maric et al.

“hasPureLiteral formula‘ ‘hasUnitLiteral formula‘
inductive_hypothesis
unitLiteralRule [of "?2ul" "formula"]
show ?thesis
by auto
next
case False
with ‘formula "= [“[] mem formula‘
“hasPureLiteral formula® “hasUnitLiteral formula‘
inductive_hypothesis
show ?thesis
using split_rule[of "formula" "selectLiteral formula"]
by auto
ged
ged
ged
ged
ged

7. Related Work There is a large and growing body of formalized math-
ematical knowledge. In this section we briefly overview faiired knowledge
and proofs relevant for computer science, especially tfarsealized in Isabelle,
and those relevant for automated reasoning and SAT and SMihgo

Archive of formal proofSis a collection of proof libraries, examples, and
larger scientific developments, mechanically checked éntiieorem prover Is-
abelle. A range of algorithms and data structures have loreraefized and veri-
fied in Isabelle and similar proof assistant tools. Theserétlyns include Quick-
sort, Binary Search, AVL Trees, Binary Search Trees, Dejptst Search, Fast
Fourier Transform, File Refinement, Cryptographic aldors (Lindenberg et
al., 2006), a range of distributed and parallel algorithBisk Paxos, Peterson’ s
algorithm).

Flaws were detected in many security protocols (e.g., (al.e2007)). Even
if security protocols are accompained with correctnessfgrdhey can still be
flawed if these proofs are not formally verifiable (e.g., (6h2006)). Proof assis-
tant tools have been used for formal verification of propertif various protocols
(e.g., (Nipkow, 2006, Barsotti et al., 2007)).

A lot of efforts have been invested in verifying programmlagguage se-
mantics and compilers. For example, Klein and Nipkow intreetl Jinja (Klein et
al., 2006), a Java-like programming language with a forradantics designed to
exhibit core features of the Java language architectureodetof the language,
virtual machine and a compiler are then formally verifiedrgd®fer described

"http://afp.sourceforge.net

Formal Correctness Proof for DPLL Procedure 19

a formally verified, fully executable compiler which was mdted from a proof
assistant (Berghofer et al., 2003). Blech and Glesner dpeela formal seman-
tics for static single assignment (SSA) phase of compifatiziech et al., 2004).
Qian and Xu used iterative abstraction refinement and autmhiheorem prov-
ing for automatically verifying C programs against safgigafications (Qian et
al. 2007).

Clark Barrett formally proved correctness of Stanford Feamork for Co-
operating Decision Procedures, but this proof, althougteqletailed, was not
verified using a proof assistant (Barret, 2003).

Tom Ridge presented an efficient, mechanically verified d@nd complete
theorem prover for first order logic (Ridge, 2004). Aftenfalization in Isabelle,
OCaml code is generated, yielding a directly executablgnairo.

Chaieb and Nipkow formalized and verified quantifier elintioabased de-
cision procedures for Presburger arithmetic (Chaieb g2@05).

Isabelle has been combined with different tools to achidviglaer degree of
automation. For instance, Weber described integratio®@f®lvers zChaff and
MiniSat with Isabelle (Weber, 2005, Weber, 2006). Both SAlvers generate
resolution-style proofs of unsatisfiability of their inpiarmulae. These proofs
are verified by the theorem prover. Fontaine et al. (Fontatred., 2006) used
Isabelle to verify the correctness of proof traces gendrbtethe SMT solver
Harvey. Barsotti at al. experimented in combining the teeoprover Isabelle
with automatic first-order arithmetic provers to increagtoeation on the ver-
ification of distributed protocols (Barsotti et al., 200Af a case study for the
experiment, they verified several clock synchronizatigogathms.

Abstract descriptions of the DPLL algorithm and its extensifor ground
Satisfiability Modulo Theory (SMT) have been developed. Nie(wnhuis et
al., 2006, Tinelli, 2002, Krsti¢ et al., 2007), rule basedgentations of these al-
gorithms and their informal correctness proofs are givaformal correctness
proofs of the DPLL procedure can be found in many mathemdticgc text-
books (e.g., (Davis et al., 1994)). However, as far as we kioowproof is the
first formalized correctness proof for the DPLL procedure.

8. Conclusions and Future Work In this paper we presented the first for-
mal proof of correctness of the forty-five years old DPLL altjon, one of the
most fundamental algorithms in computer science. In itohjsthere were no
doubts about the correctness of this algorithm. So, ourfftoes not resolve a
long-standing mystery, but rath€i) it adds to the growing body of formalized,
verifiable mathematical knowledge, knowledge that can biieg by indepen-
dent and reliable proof checke(§) it serves as a first building block of formal-

20 F. Maric et al.

ized correctness proofs for modern SAT and SMT solvers. Es&t— formally
proving correctness of state-of-the-art SAT and SMT salveery important for
many applications, is in the focus of our current work.

Appendix: One Concrete Implementation In this section we give very
simple definitions of the functions used in the DPLL defimitgiven in subsec-
tion 4.4. They give a concrete, instantiated procedure awadble obtaining an
effectively executable ML implementation. In order to haveore efficient SAT
solver, these functions should be defined in a more sophistiovay.

A formula has a unit literal iff it has a clause with only ontetal. We define
hasUnitLiteral(F) function by primitive recursion.

Definition 19.

—hasUnitLiteral([])
hasUnitLiteral(c # F) < (|¢| = 1) V hasUnit Literal (F)

getUnitLiteral (F) is the first literall such thafi] € F'. It is also defined
by primitive recursion.

Definition 20.
getUnitLiteral(c # F) =
if |c| = 1 then
head(c)
else
getUnit Literal (F)

Procedures that find and select a pure literal from a fornmeldefined using
a series of auxiliary functions.

The functionditerals(F') is a list that contains all literals that occur in the
formulaF. It is defined by primitive recursion.

Definition 21.

literals([]) =[]
literals(c # F) = cQ literals(F)

The functionhasPureLiteral Auz(cy, c2) checks if there is a literal from
the listc; whose opposite literal does not occur in the tigt It is defined by
primitive recursion.

Formal Correctness Proof for DPLL Procedure 21

Definition 22.
—hasPureLiteral Aux([], c)
hasPureLiteral Aux(l # ¢, ¢) &
if [¢ cthen
T
else
hasPureLiteral Aux(c, ¢)

Using this auxiliary function, we defineas Pure Literal:

Definition 23.
hasPureLiteral(F) < hasPureLiteral Aux(literals(F),literals(F'))

The functionget PureLiteral Auz(cy, c2) finds the literal from the list
whose opposite literal does not occur in the ligt It is defined by primitive
recursion.

Definition 24.
getPureLiteral Aux(l # ¢, c) <
if [¢ cthen
l
else
get PureLiteral Auxz(c, ¢)

Finally, we can define the functigpet PureLiteral.

Definition 25.
getPureLiteral(F) = get PureLiteral Aux(literals(F), literals(F))

selectLiteral(F') is used to select an arbitrary literal 8t For example, it
can be the first literal of the first clause bf

Definition 26.
selectLiteral(F) = head(head(F))

It was proved that the functions defined in the above way ntreespecifi-
cation given in Section 4.4. These proofs can also be fouhttfrv/argo.
matf.bg.ac.rs , while we don’t present them here since this simple imple-
mentation is just one of many meeting the required spedificat

22 F. Maric et al.

Acknowledgment.We are grateful to Amine Chaieb and to the anonymous
reviewers for useful comments on an earlier version of thjsap.

REFERENCES

S. A. Cook (1971). The Complexity of Theorem-Proving Praged. INSTOC '71: Proceedings of
the 3rd Annual ACM Aymposium on Theory of Compyt&@M Press, pp. 151-158.

M. Davis, H. Putnam (1960). A Computing Procedure for Quematiion TheoryJournal of the ACM
7(3), pp. 201-215.

M. Davis, G. Logemann, D. Loveland (1962). A Machine ProgfanTheorem-ProvingCommuni-
cations of the ACNb(7), pp. 394-397.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik (49. Chaff: Engineering an Effi-
cient SAT Solver. IDAC '01: Proceedings of the 38th conference on Design AutiomaACM
Press, pp. 530-535.

N. Eén, N. Sorensson (2003). An Extensible SAT-solvelSKT '03: Theory and Applications of
Satisfiability TestingLNCS 2919, Springer, pp. 502-518.

R. Nieuwenhuis, A. Oliveras, C. Tinelli (2006). Solving S&Rd SAT Modulo Theories: From an
Abstract Davis-Putnam-Logemann-Loveland Procedure tblIPP. Journal of the ACMB3(6),
pp. 937-977.

S. Ranise, C. Tinelli (2006). Satisfiability Modulo Theari&rends and Controversies - IEEE Intel-
ligent Systems Magazir#i(6), pp. 71-81.

J. Gu, P. W. Purdom, J. Franco, B. Wah (1997). Algorithms fier $atisfiability (SAT) Problem: A
Survey. InSatisfiability Problem: Theory and ApplicatignIMACS Series in Descrete Mathe-
matics and Theoretical Computer Science 35, AMS, pp. 19-151

L. Zhang, S. Malik (2002). The Quest for Efficient Booleani§atbility Solvers. INCAV '02: Com-
puter Aided VerificationLNCS 2404, Springer, pp. 17-36.

D. Le Berre, L. Simon, editors (2005). Special Volume on t#g 8005 Competitions and Evalua-
tions.Journal on Satisfiability, Boolean Modeling and Computat

T. Nipkow, L. C. Paulson, M. Wenzel (2005)sabelle HOL: a Proof Assistant for Higher-Order
Logic. LNCS 2283, Springer.

M. Davis, R. Sigal, E. Weyuker (1994Computability, Complexity, and Languages (Fundamentals
of Theoretical Computer Sciencéjorgan Kaufmann/Academic Press.

S. A. Cook, D. G. Mitchell (1997). Finding Hard Instances loé tSatisfiability Problem: A Survey.
In Satisfiability Problem: Theory and ApplicatigriB8IMACS Series in Discrete Mathematics and
Theoretical Computer Science 35, AMS, pp. 1-17.

M. Irgens, W. S. Havens (2004). On Selection StrategieshierGPLL Algorithm, InAdvances in

Artificial Intelligence LNAI 3060, Springer, pp. 277—-291.

. C. Paulson (1994)sabelle: A Generic Theorem ProvérNCS 828, Springer.

M. Wenzel (2007). Isabelle/lsar — a Generic Framework formdn-readable Proof Documents,
From Insight to Proaf Studies in Logic, Grammar and Rethoric 10(23), Universitialystok,
pp. 277-298.

F. Haftmann (2008). Code Generation from Isabelle/HOL TiesouRrL: http://www.cl.cam.
ac.uk/research/hvg/lsabelle/

C. Lindenberg, K. Wirt, J. Buchmann (2006). Formal Prooftfae Correctness of RSA-PSGryp-
tology ePrint ArchiveReport 2006/011http://eprint.iacr.org/

K. R. Choo (2006). On the Security Analysis of Lee, Hwang & I(2@04) and Song & Kim (2000)
Key Exchange/Agreement Protocadlsformatical7(4), pp. 467-480.

C. Li, T. Hwang, N. Lee (2007). Security Flaw in Simple Getieeal Group-Oriented Cryptosystem
using ElIGamal Cryptosysterinformatical8(1), pp. 61-66.

-

G.

S.

J.

J.

C.

P.

C.

Formal Correctness Proof for DPLL Procedure 23

. Nipkow (2006). Verifying a Hotel Key Card System. IGTAC '06: Theoretical Aspects of Com-

puting LNCS 4281, pp. 1-14.

. Barsotti, L. P. Nieto, A. F. Tiu (2007). Verification of Glksynchronization Algorithms: Experi-

ments on a Combination of Deductive Todfermal Aspects of Computint9(3), pp. 321-341.
Klein, T. Nipkow (2006). A Machine-Checked Model for a ddike Language, Virtual Machine
and CompilerACM Transactions on Programming Languages and Sysg&, pp. 619-695.
Berghofer, M. Strecker (2003). Extracting a Formallyified, Fully Executable Compiler from a
Proof AssistantElectronic Notes in Theoretical Computer Scie8¢2), pp. 33-50.

O. Blech, S. Glesner (2004). A Formal Correctness PradCémle Generation from SSA Form in
Isabelle/HOL Jahrestagung der Gesellschaft fur InformatiNI 51, Gl, pp. 449-458.

Qian, B. Xu (2007). Formal Verification for C Prograimformatical8(2), pp. 289—-304.

Barrett (2003) Checking Validity of Quantifier-Free Formulas in Combiwat$ of First-Order
Theories Ph.D. thesis, Stanford University.

Fontaine, J.I. Marion, S. Merz, L. P. Nieto, A.F. Tiu (2DBxpressiveness + Automation + Sound-
ness: Towards Combining, SMT Solvers and Interactive Phssfstants. ITACAS '06: Tools and
Algorithms for the Construction and Analysis of SystdoNCS 3920, pp. 167-181.

. Ridge (2004). A Mechanically Verified, Efficient, Soundda@omplete Theorem Prover for First

Order Logic. InArchive of Formal Proofshttp://afp.sf.net

. Krsti€, A. Goel (2007). Architecting Solvers for SAT Mad Theories: Nelson-Oppen with DPLL.

In FroCoS '07: Frontiers of Combining SystemiNCS 4720, Springer, pp. 1-27.

. Chaieb, T. Nipkow (2005). Verifying and Reflecting Qudieti Elimination for Presburger Arith-

metic. INLPAR '05: Logic for Programming, Atrtificial Intelligencend ReasoningLNCS 3835,
Springer, pp. 367—380.

Weber (2005). Using a SAT Solver as a Fast Decision Praeeftu Propositional Logic in an
LCF-style Theorem Prover. lRPHOLSs '05: Theorem Proving in Higher Order Logics (Emergin
Trends) research report PRG-RR-05-02, Computing LaboratorypfXfniversity, pp. 180-189.
Weber (2006). Efficiently Checking Propositional Resiolu Proofs in Isabelle/HOL. IRroceed-
ings of the 6th International Workshop on the Implementatib Logics CEUR Workshop Pro-
ceedings 212, SUN Site Central Europe, pp. 44-62.

Tinelli (2002). A DPLL-based Calculus for Ground Satisfiily Modulo Theories. INJELIA '02:
8th European Conference on Logics in Artificial IntelligentNAI 2424, Springer, pp. 308-319.

Received April 2008

24 F. Maric et al.

Filip Mari € is teaching assistant at the Faculty of Mathematics, Usityer
of Belgrade. He graduated in mathematics and received &nsadégree in com-
puter science from the University of Belgrade. His main aesk interests are in
formal and automated theorem proving, SAT and SMT solving @ject ori-
ented programming.

Predrag Janicic is associate professor and a leader of the Automated Rea-
soning Group at the Faculty of Mathematics, University oligBade. He received
his PhD degree in computer science from the University ofjBele. His main
research interests are in automated reasoning, especi8iy and SMT solving
and in intelligent geometrical software.

